
Recent Posts
 Integrating a cosine log integral around a semicircle contour
 Creating Difficult integrals by the residue theorem
 Proving a trigonometric integral by integrating around an ellipse in the complex plain
 Integrating a fraction of exponential and trignometric using rectangular contour
 Integrating around a triangular contour for Fresnel integral
Recent Comments
 Ricardo on Integral representation of the digamma function using Abel–Plana formula
 Zaidalyafeai on Integral representation of the digamma function using Abel–Plana formula
 Ricardo on Integral representation of the digamma function using Abel–Plana formula
 Zaidalyafeai on Integral of arctan and log using contour integration
 tired on Integral of arctan and log using contour integration
Archives
Categories
Meta
Monthly Archives: December 2016
Zeta for Even integers proof (Bernoulli numbers)
$$\zeta(2k) \, = \, (1)^{k1} B_{2k} \frac{2^{2k1}}{(2k)!}{\pi}^{2k}$$ $$\textit{proof}$$ We start by the product formula of the sine function $$\frac{\sin(z)}{z} = \prod_{n=1}^\infty \left(1\frac{z^2}{n^2 \, \pi^2} \right)$$ Take the logarithm to both sides $$\log(\sin(z)) – \log(z) = \sum_{n=1}^\infty \log \left(1\frac{z^2}{n^2 \, \pi^2} … Continue reading
The most ugly looking integral
Prove the following $$I= \log \left\{\frac{\Gamma(b+c+1) \Gamma(c+a+1)\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1) \Gamma(c+1) \Gamma(a+b+c+1)} \right\}$$ where $$I = \int_0^1 \frac{(1x^a)(1x^b)(1x^c)}{(1x)(\log x)}dx$$ $$\textit{proof}$$ First note that since there is a log in the denominator that gives as an idea to use differentiation under … Continue reading
Posted in Digamma function, Gamma function
Tagged difficult, Digamma, Gamma, Hard, Integral, proof
Leave a comment
Digamma fourth integral representation proof
$$\psi(z) = \log(z) \frac{1}{2z}2\int^\infty_0 \frac{t}{(t^2+z^2)(e^{2\pi}1)}dt\,\,\,\,;\text{ Re}z>0$$ We prove that $$2\int^\infty_0 \frac{t}{(t^2+z^2)(e^{2\pi}1)}dt= \log(z) \frac{1}{2z} \psi(z)$$ First note that $$\frac{2}{e^{2\pi t}1} =\coth(\pi t)1 $$ Also note that $$\coth(\pi t) = \frac{1}{\pi t}+\frac{2t}{\pi}\sum_{k=1}^\infty\frac{1}{k^2+t^2}$$ Hence we conclude that $$\frac{2t}{e^{2\pi t}1} =\frac{1}{\pi}t+\frac{2t^2}{\pi}\sum_{k=1}^\infty\frac{1}{k^2+t^2} $$ Substitute the … Continue reading
Digamma third integral representation proof
$$\psi \left(a\right)=\int^{\infty}_0 \, \frac{e^{t}}{t}\frac{e^{\left(a t\right)}}{1e^{t}}\, dt$$ $$\textit{proof}$$ Let \( e^{t}=x \) $$\int^{1}_0 \, \frac{1}{\log(x)}\frac{x^{a1}}{1x}\, dx$$ By adding and subtracting 1 $$\int^{1}_0 \, \frac{1}{\log(x)}+\frac{1}{1x}\, dx+\int^1_0\frac{1x^{a1}}{1x}\, dx$$ Using the second integral representation $$\int^{1}_0 \, \frac{1}{\log(x)}+\frac{1}{1x}\, dx+\gamma+\psi(a)$$ We can prove that $$\int^{1}_0 \, … Continue reading
Second integral representation of digamma proof
$$\psi(s+1)\,=\, \gamma \,+\, \int^{1}_{0}\frac{1x^s}{1x}\,dx$$ $$\textit{proof}$$ This can be done by noting that $$\psi(s+1) = \gamma +\sum_{n=1}^\infty\frac{s}{n(n+s)}$$ It is left as an exercise to prove that $$\sum_{n=1}^\infty\frac{s}{n(n+s)} = \int^{1}_{0}\frac{1x^s}{1x}\,dx$$
First integral representation of digamma proof
$$ \psi(a) = \int^{\infty}_0 \frac{e^{z}(1+z)^{a}}{z}\,dz $$ $$\textit{proof}$$ We begin with the double integral $$\int^{\infty}_0 \int^t_1 \,e^{xz}\,dx\,dz=\int^{\infty}_{0}\frac{e^{z}e^{tz}}{z}\, dz $$ Using fubini theorem we also have $$ \int^t_1 \int^{\infty}_0\,e^{xz}\,dz \,dx = \int^t_1 \frac{1}{x}\,dx = \log t $$ Hence we have the following … Continue reading
Cosine sine integral
Prove that $$\int_0^{2\pi} \cos(\sin{x})e^{\cos{x}} dx = 2\pi$$ $$\textit{proof}$$ $$\begin{align} \int_0^{2\pi} \cos(\sin{x})e^{\cos{x}} dx &=Re\left( \int_0^{2\pi} e^{i\sin(x)}e^{\cos{x}} dx\right) \\ &= Re \left(\int_0^{2\pi} e^{e^{i x}} dx\right)\\ &= Re \left(\sum_{n=0}^\infty \frac{1}{n!}\int_0^{2\pi} e^{inx} dx\right) \\ &= \sum_{n=0}^\infty \frac{1}{n!}\int_0^{2\pi} \cos(nx) dx \\ &= \int_0^{2\pi} dx = … Continue reading
Digamma difference formula proof
$$\psi(1x)\psi(x)=\pi \cot(\pi x) $$ $$\textit{proof}$$ We know by the reflection formula that $$\Gamma(x)\Gamma(1x)=\pi \csc(\pi x) $$ Now differentiate both sides $$\psi(x)\Gamma(x)\Gamma(1x)\psi(1x)\Gamma(x)\Gamma(1x)=\pi^2 \csc(\pi x)\,\cot(\pi x) $$ Which can be simplified $$\Gamma(x)\Gamma(1x)\left(\psi(1x)\psi(x)\right)=\pi^2 \csc(\pi x)\,\cot(\pi x) $$ Further simplifications using ERF results in $$ … Continue reading
Gamma Euler Reflection formula proof
$$\Gamma \left({z}\right) \Gamma \left({1 – z}\right) = \frac \pi {\sin \left({\pi z}\right)}\,\,\, \, , \forall z \notin \mathbb{Z}$$ $$\textit{proof}$$ We can use the sine product formula $$\frac{\pi}{\sin(\pi z)} = \frac{1}{z}\prod_{n=1}^\infty\left(1\frac{z^2}{n^2}\right)^{1}$$ Now we start by noting that $$\Gamma(z)\Gamma(1z) = z\Gamma(z)\Gamma(z) $$ … Continue reading
Relation between binomial sum and harmonic numbers
Prove that $$\sum_{r=1}^n {n\choose r}(1)^{r+1}\dfrac{1}{r}=\sum_{r=1}^n \dfrac{1}{r}$$ $$proof$$ Start by $$\sum_{r=0}^n {n\choose r}x^r=(1+x)^n$$ Which can be converted to integration $$\sum_{r=1}^n {n\choose r}\frac{(1)^{r}}{r}=\int^{1}_0 \frac{(x+1)^n1}{x} dx$$ By substitution we have $$\sum_{r=1}^n {n\choose r}\frac{(1)^{r+1}}{r}=\int^{1}_0 \frac{t^n1}{t1} dt = H_n$$ Note the last step by expanding … Continue reading