# Triple integral with sines and cosines

Find the integral

\begin{align}\int^\infty_0 \int^\infty_0 \int^\infty_0 \frac{\sin(x)\sin(y)\sin(z)}{xyz(x+y+z)}(\sin(x)\cos(y)\cos(z)\\ + \sin(y)\cos(z)\cos(x) + \sin(z)\cos(x)\cos(y))\,dx\,dy\,dz \end{align}

$$\textit{solution}$$

This can be rewritten as
$$3\small\int^\infty_0 \int^\infty_0 \int^\infty_0 \frac{\sin^2(x)\sin(y)\cos(y)\sin(z)\cos(z)}{xyz(x+y+z)}\,dx\,dy\,dz$$

Now consider

$$\small F(a) = 3\int^\infty_0 \int^\infty_0 \int^\infty_0\frac{\sin^2(x)\sin(y)\cos(y)\sin(z)\cos(z) e^{-a(x+y+z)}}{xyz(x+y+z)}\,dx\,dy\,dz$$

Taking the derivative

$$\small F'(a) = -3\int^\infty_0 \int^\infty_0 \int^\infty_0\frac{\sin^2(x)\sin(y)\cos(y)\sin(z)\cos(z) e^{-a(x+y+z)}}{xyz}\,dx\,dy\,dz$$

By symmetry we have
$$F'(a) = -3\left(\int^\infty_0 \frac{\sin^2(x)e^{-ax}}{x}\,dx \right)\left( \int^\infty_0 \frac{\sin(x)\cos(x)e^{-ax}}{x}\,dx\right)^2$$

We can evaluate the integrals to

$$F'(a) = -\frac{3}{16} \log\left(\frac{4}{a^2}+1 \right)\arctan^2\left(\frac{2}{a}\right)$$

By integration we have

$$F(0) = \frac{3}{16} \int^\infty_0\log\left(\frac{4}{a^2}+1 \right)\arctan^2\left(\frac{2}{a}\right)\,da$$

Let $x = 2/a$

$$I = \frac{3}{8} \int^\infty_0\frac{\log\left(x^2+1 \right)\arctan^2\left(x\right)}{x^2}\,dx$$

First note that

$$\int \frac{\log(1+x^2)}{x^2}\,dx = 2 \arctan(x) – \frac{\log(1 + x^2)}{x}+C$$

Using integration by parts

$$I = \frac{\pi^3}{12}+2\int^\infty_0\frac{\arctan(x)\log(1 + x^2)}{(1+x^2)x}\,dx$$

For the integral let

$$F(a) = \int^\infty_0\frac{\arctan(ax)\log(1 + x^2)}{(1+x^2)x}\,dx$$

By differentiation we have

$$F'(a) = \int^\infty_0 \frac{\log(1+x^2)}{(1 + a^2 x^2)(1+x^2)}\,dx$$

Letting $1/a = b$ we get

\begin{align}\frac{1}{(1 + a^2 x^2)(1+x^2)} &= \frac{1}{a^2} \left\{ \frac{1}{((1/a)^2+x)(1+x^2)}\right\}\\ &=\frac{b^2}{1-b^2}\left\{ \frac{1}{b^2+x^2}-\frac{1}{1+x^2} \right\} \end{align}

We conclude that
$$\small \frac{b^2}{1-b^2}\int^\infty_0 \frac{\log(1+x^2)}{b^2+x^2}-\frac{\log(1+x^2)}{1+x^2} \,dx = \frac{b^2}{1-b^2}\left\{ \frac{\pi}{b}\log (1+b)-\pi\log(2)\right\}$$

Where we used that

$$\int^\infty_0 \frac{\log(a^2+b^2x^2)}{c^2+g^2x^2}\,dx = \frac{\pi}{cg}\log \frac{ag+bc}{g}$$

By integration we deduce that

$$\int^1_0 \frac{\pi}{a^2-1}\left\{ a\log \left(1+\frac{1}{a} \right)-\log(2)\right\}\,da = \frac{\pi}{2}\log^2(2)$$

For the last one I used wolfram alpha, however it shouldn’t be difficult to prove.

Finally we have

$$\int^\infty_0\frac{\log\left(x^2+1 \right)\arctan^2\left(x\right)}{x^2}\,dx = \frac{\pi^3}{12}+\pi \log^2(2)$$

This entry was posted in Uncategorized and tagged , , , , . Bookmark the permalink.

### 2 Responses to Triple integral with sines and cosines

1. Ali says:

thanks for the efforts Zaid.

• Zaidalyafeai says:

You are welcome.