# Integrating a fraction of exponential and trignometric using rectangular contour

[Ex 41 ] Watson’s complex integration

$$\int^\infty_0 \frac{\sin(ax)}{e^{2\pi x}-1}\,dx = \frac{1}{4}\coth\left(\frac{a}{2} \right)-\frac{1}{2a}$$

$$\textit{solution}$$

By integrating the following function

$$f(z) = \frac{e^{iaz}}{e^{2\pi z}-1}$$

The function is analytic in and on the contour, indented at the poles of the function

Hence by the residue theorem

$$\int_{\gamma_{\epsilon_2}}f(z)\,dz+\int^R_{\epsilon_2}f(x)\,dx+\int^{R+i}_{R}f(x)\,dx\\+\int_{R+i}^{i+\epsilon_2}f(x)\,dx+\int_{\gamma_{\epsilon_1}}f(z)\,dz-\int^{i-i\epsilon_1}_{i\epsilon_2}f(x)\,dx=0$$

Let us first look at with $R \to \infty$

\begin{align}\left|\int_{R}^{R+i} \frac{e^{iax}}{e^{2\pi x}-1} \,dx\right| &=\left|iR\int^1_0\frac{e^{ia(R+ixR)}}{e^{2\pi (R+ixR)}-1} \,dx\right| \\&\leq R\int^1_0\frac{|e^{ia(R+ixR)}|}{|e^{2\pi (R+ixR)}-1|} \,dx
\\&\leq \frac{R}{|e^{2\pi R}-1|} \int^1_0 e^{-axR} \,dx
\\&= \frac{1}{a|e^{2\pi R}-1|} (1-e^{-aR}) \sim_{\infty} 0\end{align}

The next integral can be reduced to
\begin{align}
\int^{i(1-\epsilon_1)}_{i\epsilon_2}\frac{e^{iax}}{e^{2\pi x}-1} \,dx &= i \int^{(1-\epsilon_1)}_{\epsilon_2}\frac{e^{-ax}}{e^{2\pi i x}-1} \,dx \\&= \frac{1}{2}\int^{(1-\epsilon_1)}_{\epsilon_2}\frac{e^{-ax}}{\sin(\pi x) e^{i\pi x}} \,dx
\\ &= \frac{1}{2}\int^{(1-\epsilon_1)}_{\epsilon_2}\frac{e^{-ax}}{\sin(\pi x) e^{i\pi x}} \,dx
\\ &= \frac{1}{2}\int^{(1-\epsilon_1)}_{\epsilon_2}\frac{\cos(\pi x)}{\sin(\pi x) }e^{-ax} \,dx-\frac{i}{2}\int^{(1-\epsilon_1)}_{\epsilon_2}e^{-ax} \,dx\end{align}

Since the first integral diverges when $\epsilon_1,\epsilon_2 \to 0$

$$PV\int^{i}_{0}\frac{e^{iax}}{e^{2\pi x}-1} \,dx =PV \int^{1}_{0}\frac{\cos(\pi x)}{2\sin(\pi x) }e^{-ax} \,dx-i\frac{1-e^{-a}}{2a}$$

The remaining integrals can be evaluated using residues
$$\lim_{\epsilon_2 \to 0} \int_{\gamma_{\epsilon_2}}f(z)\,dz = -\frac{\pi i}{2}\mathrm{Res}(f,0)= -\frac{i}{4}$$

$$\lim_{\epsilon_1 \to 0} \int_{\gamma_{\epsilon_1}}f(z)\,dz = -\frac{\pi\,i}{2}\mathrm{Res}(f,i)= -\frac{i}{4}e^{-a}$$

By combining the results together

$$PV\int^\infty_{0}\frac{e^{iax}}{e^{2\pi x}-1}\,dx -PV\int^\infty_{0}\frac{e^{ia(x+i)}}{e^{2\pi (x+i)}-1}\,dx \\-PV \int^{1}_{0}\frac{\cos(\pi x)}{2\sin(\pi x) }e^{-ax} \,dx+i\frac{1-e^{-a}}{2a} = i\frac{e^{-a}+1}{4}$$

Which reduces to

$$(1-e^{-a})PV\int^\infty_{0}\frac{e^{iax}}{e^{2\pi x}-1}\,dx -PV \int^{1}_{0}\frac{\cos(\pi x)}{2\sin(\pi x) }e^{-ax} \,dx = i\frac{e^{-a}+1}{4}-i\frac{1-e^{-a}}{2a}$$

By equating the real part

$$\int^\infty_0 \frac{\sin(ax)}{e^{2\pi x}-1}\,dx = \frac{1}{4}\coth\left(\frac{a}{2} \right)-\frac{1}{2a}$$

This entry was posted in Contour Integration and tagged , , , , , , , , . Bookmark the permalink.