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Introduction

This book is a summary of working on advanced integrations for around five years. It collects many
examples that I gathered during that period. The approaches taken to solve the integrals aren’t neces-
sarily the only and best methods but they are offered for the sake of explaining the topic. Most of the
content of this book I already wrote on mathhelpboards.com during the past three years but I thought
that publishing it using a pdf would be easier to read and distribute. The motivation behind this book is
to allow those who are interested in solving complicated integrals to be able to use the different methods
to solve them efficiently. When I started learning about these techniques I would suffer to get enough
information about all the required approaches so I tried to collect every thing in just one book. You are
free to distribute this book and use any of the methods to solve the integrals or use the same techniques.
The methods used are not necessarily new or ground-breaking but as I said they introduce the concept
as easy as possible.

To follow this book you have to be know the basic integration techniques like integration by parts, by
substitution and by partial fractions. I don’t assume that the readers know any other stuff from any
other topics or advanced courses from mathematics. Usually the details that require deep knowledge of
analysis or advanced topics are left or just touched upon lightly to give the reader some hints but not
going into details.

After reading this book you should be able to solve many advanced integrals that you might face
in engineering courses. I hope you enjoy reading this book and if you have any suggestions, com-
ments or correction I will be happy to recieve them through my email mailto:alyafey22@gmail.com
or this email mailto:alyafey_22@hotmail.com. Also I am avilable as a staff member at http://www.

mathhelpboards. com if you have some questions that I could reply to you directly using Latex.
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1 Differentiation under the integral sign

This is one of the most commonly used techniques to solve a numerous number of questions.

Assume that we have the following function of two variables

fab f(x,y)dx

Then we can differentiate with respect to y provided that f is continuous and has a partial continuous

derivative on a chosen interval

b
Fiy)= [ fy)de
Now using this in many problems is not that clear you have to think a lot to get the required answer

because many integrals are usually in one variable so you need to introduce the second variable and

assume it is a function of two variables.

1.1 Example

Assume we want to solve the following integral

1 22 _
/ x4 -1 o
o log(x)

That seems very difficult to solve but using this technique we can solve it easily. The crux move is to

decide where to put the second variable! So the problem with the integral is that we have a logarithm
in the denominator which makes the problem so difficult to tackle! Remember that we can get a natural
logarithm if we differentiate exponential functions i.e F(a) = 2* = F’(a) = log(2) - 2°

Applying this to our problem

Loge—1
F(a) = /o o (2) dx

Now we take the partial derivative with respect to a

Lo [fx%-1 1 1
Fay=[ < d = @y =
(a) /0 da (log(x)) v fo T

Integrate with respect to a

F(a)=log(a+1)+C

12



To find the value of the constant puta =0

F(0)=1log(1)+C = C=0

This implies that

Lgt—1
——dzx=1 1
fo log(z) x=log(a+1)

By this powerful method we were not only able to solve the integral we also found a general formula for

some a where the function is differentiable in the second variable.

To solve our original integral put a = 2

g2 -1
/ dx =log(2+1) =1log(3)
o log(x)

1.2 Example
Find the following integral

7
[ ’ dzr
0 tanx

So where do we put the variable a here? that doesn’t seem to be straight forward , how do we proceed ?

Let us try the following

_ (% arctan(atan(x))
Fla)= ./0 tan(z) da

Now differentiate with respect to a

3 1

F@= [ e

It can be proved that

3 1 ™
fo 1+ (atan(z))? do = 2(1+a)

Now Integrate both sides

F(a) = glog(l +a)+C

Substitute a =0 to find C' =0

13



[0 % arctan(atan(z))

T
= T log(1
tan(z) dx 5 og(1l+a)

Put a = 1 in order to get our original integral

™

T ™
= —log(2
/(; tan(x) de 2 0g(2)

1.3 Example

/“"’ sin(z) d
0 x

This problem can be solved by many ways , but here we will try to solve it by differentiation. So as I
showed in the previous examples it is generally not easy to find the function to differentiate. Actually
this step might require trial and error techniques until we get the desired result, so don’t just give up if
an approach doesn’t work!

Let us try this one

F(a):/(;oo%dx

If we differentiated with respect to a we would get the following

F'(a) = fooo cos(ax) dx

But unfortunately this integral doesn’t converge, so this is not the correct one. Actually, the previous
theorem will not work here because the integral is improper.

So let us try the following

X

F(a):fo‘” sin(xx)e_a i

Take the derivative
F'(a)=- [ sin(z)e " dx
0
Use integration by parts twice

-1
a?+1

F'(a)=- /(;oo sin(z)e™** dx =

Integrate both sides

14



F(a) = —arctan(a) + C

To find the value of the constant take the limit as a grows large

C = lim F(a) + arctan(a) = g

So we get our F'(a) as the following

F(a) = —arctan(a) + g

For a = 0 we have

f°° sin(z) _ m
0 r 2

15



2 Laplace Transform

2.1 Basic Introduction

Laplace transform is a powerful integral transform. It can be used in many applications. For example, it
can be used to solve Differential Equations and its rules can be used to solve integration problems.

The basic definition of Laplace transform

F(s)=£((0) = [~ e f @t

This integral will converge when

Re(s) >a, |f(t)] < Me™

Let us see the Laplace transform for some functions

2.1.1 Example

Find the Laplace transform of the following functions

1 f(t) =1

oo 1
F(s):f e Stdt = -
0

s
2. For f(t) =t" wheren >0

We can prove using integration by parts

o0 |
_ —styn _ n:
F(s)= /0 e 't dt = e

3. For the geometric function f(t) = cos(at), Use integration by parts

S

F(s) = fooo e %t cos(at) dt =

52 +a?

16



2.2 Example

Find the following integral

f e~ 23 dt
0

We can directly use the formula in the previous example

oo |
—-styn _ n.
/0 e 't dt = vy

Here we have s=2and n =3

o .. 313
—2t,3 _ _
/0 el = o5y )

2.3 Convolution

Define the following integral

(Fr)®)= [ F(s)ate-s)ds

Then we have the following

L(f*g)(#)) = L{f(1))L(g(1))

2.4 Inverse Laplace transform

So, basically you are given F'(s) and we want to get f(¢) this is denoted by

L(f(t)) =F(s) = LT(F(s))=f(t)

24.1 Example

Find the inverse Laplace transform of

1. F(s)=%

We use the results applied previously

2! 1 1
L(t?) = 5 = 55(152) o=

17



Now take the inverse to both sides

2. F(s)==

s2+4

we can use the Laplace of cosine to deduce

cos(2t) = L£7* ( i )

s2+4
Exercises

Find the Laplace transform

Find the inverse Laplace

2.5 Interesting results
2.5.1 Example

Prove the following

B(z,y) = foltr‘l (1-t)¥ ' dt = m

B is the Beta function and T' is the Gamma function. We will take enough time and examples to explain both

functions in the next sections.

proof
We need convolution rule we described earlier

Let us choose some functions f and ¢

f@)=t",g(t) =t

Hence we get

(t* = t¥) = /:sm(t— s)¥ds

So by the convolution rule we have the following

18



L7 % 1Y) = L(t")L(Y)

We can now use the Laplace of the power

x!-y!
STHY+2

GETOE

Notice that we need to find the inverse of Laplace £7!

-1 z 4yy\y - -l m!'y!):x+y+1 x!-y!
L)) =L (sm+y+2 t (x+y+1)!

So we have the following

x!-y!

tﬂc ty :tgc+y+1
(7= #) (x+y+1)!

By definition we have

o _EU__ [,
(z+y+1)! Jo

Now put t =1 we get

x!-y!

1
g - -Tl_ Yy
(z+y+1)! fo s*(1-s)"ds

By using that n! = I'(n + 1) we deduce that

C(z+1)T(y+1)

1
x 1_ Yy —
/(; s(1-s)"ds (z+y+2)

which can be written as

! -1 y-1 _ F(.I‘)F(y)
/0 sTTH(1-s) ds_il—‘(x+y)

2.5.2 Example

Prove the following

fj@dt: fow LOF(1)) ds

proof

we know from the definition

19



fom LOF(8))ds = fom (foooe‘“f(t)dt) ds

Now by the Fubini theorem we can rearrange the double integral

fom f(t)(fome‘“ ds) dt

The integral inside the parenthesis

b 1
f e Stds ==
0 t

Now substitute this value in the integral

2.5.3 Example

Find the following integral

/°° sin(t) it
0 t

This is not the first time we see this integral and not the last . We have seen that we can find it using
differentiation under the integral sign.

Let us use the previous example

A ” Smt(t) at= " L(sin(t)) ds

We can prove that

1
s2+1

L(sin(t)) =

Substitute in our integral

= ds -1 -1 7T
=tan "(S)|s=eo —tan " (s)|s=0 = =
s =t ), ()0 = 5

20



3 Gamma Function

The gamma function is used to solve many interesting integrals, here we try to define some basic prop-

erties, prove some of them and take some examples.

3.1 Definition

M(z+1)= f ettt dt
0

For the first glance that just looks like the Laplace Transform, actually they are closely related.

So let us for simplicity assume that x = n where n > 0 (is an integer )

P(n+1)= [ et dt
0

We can use the Laplace transform

oo n!
[ et = ——|e1 =n!
0 8n+1

So we see that there is a relation between the gamma function and the factorial. We will assume for the

time being that the gamma function is defined as the following

n!=T(n+1)

This definition is somehow limited but it will be soon replaced by a stronger one.

3.2 Example

Find the following integrals

f ettt dt
0

By definition this can be replaced by

f e ttdt=T(4+1)=41=24
0

21



3.3 Example

Solving the following integrals

1.
f e tdt
0
We need a substitution before we go ahead, so let us start by putting « = ¢ so the integral becomes
1 bt 1 1 1 1
f[ efr2-x 2dt==-T(1+0)==
2Jo 2 2
2.

1
f log(t) t? dt
0

we use the substitution ¢ = e~ 2

1 9 1 o 4.
f log(t) ¢ dt:—ff e 2 ~xdx
0 4 Jo

Using another substitution ¢ = 3£

-1 o — —
Y A C)
9 Jo 9 9

It is an important thing to get used to the symbol I'. I am sure that you are saying that this seems
elementary, but my main aim here is to let you practice the new symbol and get used to solving some

problems using it.
3.4 Exercises
Prove that

r(5) T(2) 1

T(7) 30

Find the following integral

/oo e 50t 120 gt
0

22



3.5 Extension

For simplicity we assumed that the gamma function only works for positive integers. This definition
was so helpful as we assumed the relation between gamma and factorial. Actually, this restricts the
gamma function, we want to exploit the real strength of this function. Hence, we must extend the gamma
function to work for all real numbers except for some values. Actually we will see soon that we can

extend it to work for all complex numbers except where the function has poles.

3.5.1 Theorem

Using the integral representation we can extend the gamma function to x > —1.

proof

We need only consider the case when -1 < z < 0.

Near infinity we have the following

U et dt
0

Near zero when z = —z we have the following

< f e~tdt < 0o
€

~t

€ €

1

f e—dt~f Zdt < 0o
0o t* 0o t?

3.5.2 Reduction formula
P(z+1)=al(x)

This can be proved through integration by parts for > 0. Actually this representation allows us to
extend the gamma function for all real numbers for non-negative integers. In terms of complex analysis

this function is analytic except at non-positive integers where it has poles.

3.6 Other Representations

3.6.1 Euler Representation

proof
Note that

F(z+n+1):F(z+1)ﬁ(k+z)
k=1

23



Which indicates that

n +Z:I‘(z+n+1)
== 7200

Also note that

Hk:n!

k=1

Hence we have

z n k 2 |
n “T(2) lim —
noeo z p i k+2z noco I'(z4+n+1)

Hence we must show that

n® x n!

lim 1

noeo I'(z+n+1) B

Note that by Stirling formula

D(z+n+1) ~V2r(n+z)"=1/2e(n+2)

and

n! ~\2mn 2o

Hence we have by

n? x ( 2ﬂ_nn+1/2e—n) n

lim = lim i

n—>00 | /271'(77, + Z)n+z+1/26—(n+z) B n— oo (n + Z)ne—z

Note that
lim (1 + i) =e”

n—00 n

To prove the other product formula note that

n z n z
(1_,_1) — szln(1+k) :(n+1)anz
k=1 k [Tj-1 k*

Hence we deduce
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3.6.2 Example

Prove that
F(:EJ'_Z)F(y_Z) k=0 -'17+k/’ y+k‘
proof
Start by
Z n k
I'(z) = lim —
We have
rere) o CE Tl ) (5 e 2y)
F(JH—Z)F(y—z) e (7;:: HZ:I k+§+z)( y’/: Hk 1 k+lzj z)

By simplifications we have

I'(x)T(y) - lim (x+2)(y-2) ﬁ (k+z+2)(k+y-2)
T(x+2)T(y-2) n-oo Ty i} (k+z)(k+y)

This simplifies to

oo 0w Bl =) (55

3.6.3 Weierstrass Representation

BN (TR

n=1

where ~ is the Euler constant

proof

Take logarithm to the Euler representation

log 2T'(2) = hm z Z (log (1 + k) —log(k)) — Z log(l + k)

=1

Note the alternating sum

ki (log (1 + k) —log(k)) = log(n + 1)

Hence we have
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log 2I'(2) = lim zlog(n+1) - log (1 + %)

Now we can use the harmonic numbers

L |
H,= > —
Add and subtract zH,, 1
log 2I'(2) = lim zlog(n+1) - zH, +i lo (1+Z)_1+Z + =
g R P2 A S B

The last term goes to zero and by definition we have the Euler constant

v = lim H, -log(n)

Hence the first term is the Euler constant

oo -1
log 2I'(z) = -2y + Zlog(1+i) + 2
k=1 k k

By taking the exponent of both sides

oo -1
2D(z) =% ] (1 + E) e
k=1 k
3.7 Laurent expansion

1 1

D(2) = - =7+ 5 (0% +((2)z+ O()

proof

Note that f(z) =I'(z + 1) has a Maclurain expansion near 0

I(z+1)= i Lk)(l)zk

k=0 k"

For the first term

F0)=T(1+0)=1

For the second term
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To find the derivative, note that by the Weierstrass representation

o -1
logT'(2) = —vz—log(z) + Zlog(l+f) + 2
n

n=1 n

By taking the derivaive we have

I(z) 1 &1
(=) ‘_7_2+Z,;k(z+k)

Hence we have
b 1
'l)=-vy-1+) ——=-y-1+1=-
(1)=— ,;k(uk) v ¥

For the third term

£7(0) _T(1)
2! 2

Taking the second derivative

I"(z)0(2) - (I"(2))* _ 1 .
I'2(z) 22 D (z+k)?

Which indicates that

(1) = () 1+ 3 i =77+ 02)

Hence we deduce that

P(z+1)=1-yz+ %(72 £ C2)2+ 0(%)

Dividing by z we get our result.

3.8 Example

Find the integral

oo -t
_at

0 Vi

Now according to our definition this is equal to I' () but this value can be represented using elementary
functions as follows

Let us first make a substitution vt =

2 f e dz
0
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Now to find this integral we need to do a simple trick, start by the following

(fom e*fdz) :(fow e*fdz)-(fowe*fzdx)

Since z is a dummy variable we can put

o) (o)

Now since they are two independent variables we can do the following

/Mfoo 67(m2+y2)dydz
o Jo

2

Now by polar substitution we get

5 & 2
f f e rdrdf
o Jo

The inner integral is %, hence we get

c%
[NE]
N |~
QU
D
I
1

So we have

Take the square root to both sides

So we have our result

3.9 More values

We can use the reduction formula and the value of I'(1/2) to deduce other values. Assume that we want

to find
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If we used this property we get

o(reg)-5r(e) -

Not all the time the result will be reduced to a simpler form as the previous example. For example we

don’t know how to express I'( i) in a simpler form but we can approximate its value

1
I'{-)~3.6256--
(3)

Hence we just solve some integrals in terms of gamma function since we don’t know a simpler form.

For example solve the integral

f e ‘t1dt
0

we know by definition of gamma function that this reduces to

oo . r(i
f e 'ti dt:r(§) = (%)
0 4 4

We have seen that I' (%) = /7 but what about T (‘71) ?

By the reduction formula

so we have that

Then we can prove that any fraction where the denominator equals to 2 and the numerator is odd can be

reduced into

1“(2”;1):01“(%) L CeQ,neZ
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3.10 Legendre Duplication Formula

I‘(1 +n) = (Qn)!ﬁ

2 © 4np)

proof

For the proof we use induction by assuming n > 0. If n = 0 we have our basic identity

Now we need to prove that

R e (R R et

Now we use the reduction formula

F(1+n+1): 1+2n1“(1+n)
2 2 2

By the inductive step we have

1 !
+2nI‘(1+n) _1+2n (2n)
2 2 2 4nn!

VT

We can multiply and divide by 2n + 2

1+2n (2n)! 2n +2 (2n +2)!
. I =
2 4nn) 2n+2 47*l(n+1)!

VT

3.11 Example

o ¢t cosh(av/t)
[,

we have a hyperbolic function

We know that we can expand cosh using power series

=) ‘,L.Zn
cosh(z) = nz=0 ).
Let = a\/t
cosh(av/t) = i a1
_n=0 (27’L)'

Substituting back in the integral we have
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f oo . i 2n tn
o
0 n=0 (271)' \/_
Now since the series is always positive we can swap the integral and the series

2n

> (;n)! Uo i e_tt”_%dt]

n=0

Hence we have by using the gamma function

n=0 (27L')

By further simplification

n=0 47 n!
Now that looks familiar since we know that
[e'e) Z'rL
>
n=0 n'

Putting z = “4—2 and multiplying by /7 we get

w (22)"
4 a2
Z = 64

n=0

So we have finally that

o ¢~ cosh(av/t) a2
————2dt = \/me' T
b= v

3.12 Euler’s Reflection Formula

P()T(1-2)= —— V2¢Z

sin (72)
proof

We have to use the sine infinite product formula

12 2\
sm(7rz) T2 [l ( )

n=1
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Now we start by noting that

L(2)T(1-2) =-20(2)T'(-2)

Now using the Weierstrass formula we have

T(T(-2) =2 S]] (1 . z)'lez/n, 1 (1 _ Z)_lez/n

n=1

This simplifies to

3.13 Example

Find the following

The first example we can write

r(-3)r ()

Now by ERF (Euler reflection formula) we have the following

o))

()

Using the same idea for the second one

SR

This expression simplifies to




By geometry to hyperbolic conversions we get

— & rsech ( z )
cosh ( 5 ) 2
3.14 Example
Find the integral
a+1
f logT'(z)dx
Let the following

fla) = faa+1 logT'(z)dx

Differentiate both sides

f'(a) =1logT(1 +a) —logT'(a) = log(a)

Integrate both sides

fla)=alog(a) —a+C

Leta—0

We have

1
C=[ logT'(z) dx
0

By the reflection formula

1 1 1 1
f logT'(z) dx = f logdx - f logsin(wx) dx - [ logT(1-x)dx
0 0 0 0

Which implies that
1 1 1 1
2 f logT(z) dx = f logdx - [ logsin(mx) dx = log(2m) — f log |2 sin(7z)| dx
0 0 0 0
Note that this is the Clausen Integral

1 2 2 2
f log |2sin(7x)|dx = — [ log |2sin(xz/2)|dx = —cla(27) =0
0 0 T

s
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Hence we finalize by

1
f logT(z) dx = %log(27r)
0
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4 Beta Function

4.1 Representations

4.1.1 First integral formula

1
f #1(1= ) dt = B(z,y)
0

It is related to the gamma function through the identity

I'(z)I'(y)

B(‘Tvy) = F(x+y)

We have proved this identity earlier when we discussed convolution.

We shall realize the symmetry of beta function that is to say

6(‘T7y) = 6(y7$)

Beta function has many other representations all can be deduced through substitutions

4.1.2 Second integral formula
0o tr—l
B(z,y) = f —dt
(.y) 0o (1+t)z+y
4.1.3 Geometric representation

B(x,y) =2 /E cos® 1 (¢) sin® ! (¢) dt
0

The proofs are left to the reader as practice.

4.2 Example

Prove the following

1
f dz:z
0 22+1 2

proof
Putz =/t

1 o t3
—f *at
2Jo t+1
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We can use the second integral representation by finding the values of z and y

Hence we have

1> t2 dt_B(%é)_F(%)F(%)_ﬁ-ﬁ_z
2Jo (t+1) 2 2 2 2

4.3 Example

o0 1
—d
fo (22+1)2 ?

Using the same substitution as the previous example we get

1 e t7
- LA
2Jo (t+1)2

Then we can find the values of = and y

-1 1
r-1=— = x=—
2 2
rT+y=2 = y=—
Then
1= i BGH TAHTE) _TAIE)
2Jo (t+1)2 2 2 4 4

44 Example

Find the generalization

Using the same substitution again

1 e t7
= dt
2Jo (t+1)»
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Then we can find the values of z and y

1
x+y—n:>y—n—§
Then
L= t7 . TG T(n-3)
2Jo (t+1)n 2r'(n)
Now by LDF

F(n 1)_ 2n-2)\/m T(2n-1)\/7

“2) AnT(n-1)! 47 1T(n)

Substituting in our integral we have the following

1~ t3 i 2m T n-1)
2Jo (t+1)»  4n.T2(n)

foo L, _mT@n-1)
o (@2+1)n 2211 .T2(p)

It is easy to see that for n € Z* we get a 7 multiplied by some rational number.

4.5 Example

Lozn B (2n)N
JA A= @ur

Where the double factorial !! is defined as the following

n-(n-2)-5-3-1 ;if nis odd
nll = n-(n-2)-6-4-2 ;if niseven
1 ;ifn=0

The integral in hand can be rewritten as

1 1
/ 2" (1-2)"2dz
0

We find the variables x and y
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r—1=n => z=n+1

This can be written as

1 1
f z"-(l—z)_Edz:B(n+1,1)
0 2

By some simplifications

1\ T'(3)T(n+1)  /al(n+1)
B(””’ﬁ)‘ 1“2( 5 " () (n+d)

Now you shall realize that we must use LDF

Val(n+1) 2./ n! _2.227(nl)?
(n+DP(n+1) " @n+Dya 2~ (2n)

4n !

Now we should separate odd and even terms in the denominator

22“( (n 1)---3-2-1)2
(2n 2n-2)-4-2)((2n+1)-(2n-1)---3-1)

We insert 22" into the square to obtain

(2n-(2n-2)---6-4-2)2 9 (2n)!!

2 (2n-(2n-2)4-2)((2n+1)-(2n-1)-3-1) ~ (2n+ 1)

4.6 Example

Find the following integral

0o 2 \"%
[ (1+ $ ) dx
—o0 n — 1

First we shall realize the evenness of the integral

oo 2
2/ (1+ x
0 n-—

Lett= ‘E—ZI
poun

\
&



Now we see that our integral becomes so familiar

\/ﬁB(l n—l):\/mF("El)

2’2 ()
4.7 Example

Find the following integral

o -p
f 33 dz
o x3+1

Let us do the substitution > = ¢

2
1 © T3
ff " dt
3 Jo t+1

Now we should find z,y

1=
y+r=1 = yzl—?p

so we have our beta representation of the integral

B(5 %) _r(E)ra-5°)

w
w

Now we should use ERF

4.8 Example

Now let us try to find

5 3
sin® z dz
0

Rewrite as

% . 3 0
sin2 z cos” zdx
0
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This is the Geometric representation

Then

4.9 Example

Find the following integral

This is the geometric representation

Then

4.10 Exercise

Prove

f§(sinz)i (cosz) " dz
0

1+2

2-1=1 = x=—
2

2u-1=—1 = y=

(\}

()5

x2m+1

m!(n-m-2)!

b

ax? +c)"

T = 2(n - 1)l gm+1 gn-m-1

40



5 Digamma function

5.1 Definition

I(z)
INC))

P(x) =

We call digamma function the logarithmic derivative of the gamma function. Using this we can define

the derivative of the gamma function.

I'(z) = ¢(z) I'(x)

5.2 Example

Find the derivative of

RRICED

We can use the differentiation rule for quotients

IV 2z + V)T(x) - T'(2)T'(2z + 1)
I2(x)

which can be rewritten as

2I'(2z + 1)Y(2z + 1)I'(z) = ¢(2)l'(2)I'(2z +1)  T'(2z+1)
I2(x) - I(2)

(29(2z +1) - ¢(x))

5.3 Difference formulas

5.3.1 First difference formula
(1 -2)—y(x) = weot(mwz)
proof
We know by ERF that
I'(z)T'(1-x) = 7ese(mz)

Now differentiate both sides
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Y(x)T(2)I(1-2z) - (1 -2)D(2)T(1 - z) = -7 cse(mx) cot(mz)

Which can be simplified

L(z)L(1-2) (¥(1-2z)-9(x)) =72 cse(mz) cot(mz)

Further simplifications using ERF results in

Y(1-x)—(x) =7cot(mwz)

5.3.2 Second difference formula
1
Y+ a) - (o) =

proof
Let us start by the following

r(l+z)
P(z)
Now differentiate both sides
I'(l1+x) B
Which simplifies to
_ @) _1
¢(1+x)_w(x) - F(l"’l‘) - T
5.4 Example
Find the following integral
= log(s)

o (1L+a2)2

Consider the general case

[ l,tl
T 4
,A (1+22)2 "

Use the following substitution 22 = ¢
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1 oo %
h f o
2Jo (1+1)2

By the beta function this is equivalent to

1 = t°% 1
7/ tizdt:7B(a+172_a+1):lr(a+1)r(2_a+1)
2Jo (L+t)? 2 2 2 2 2 2

Differentiate with respect to a

=1 A i () () o (-

Now puta =0

foo log(t)t= 1
=-T
4 (1+t)2 4

Now we use our second difference formula

(-4 )ele-)-2)-

Also by some gamma manipulation we have

GGG 6]

The integral reduces to

/“"’log(t)t2 po T
4 1+t)2 4
Putting 2 = t we have our result
< ]
og(z) , .7
0o (1+a2)2 4

5.5 Series Representation

¢(w)=—v—i+i -

& n(n+a)

proof

We start by taking the logarithm of the Weierstrass representation of the gamma function

log (T'(z)) = —va - log(x) + i —log(l + %) + %

n=1
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Now we shall differentiate with respect to

w($)=—v—l+
X

It
—_
+3‘
38
+
S

Further simplification will result in the following

1
@/}(z):—'y—; +7;n(n+x)

5.6 Some Values

Find the values of

1. (1)
b(1)=—y—14 5
- n=1 TL(TL + 1)
It should be easy to prove that
i 1
=1
nzzzl n(n+1)
Hence we have
P(1) = -y
2.9 (3)
1 >, 1
w(ﬁ)__7 -2 +,;n(2n+1)
We need to find
s 1
nZ::l n(2n+1)

We can start by

> x—:—log(l—x)
n

So we can prove easily that
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M8

—— =2-2log(2
‘n(2n+1) og(2)

n

Hence

v(3) = - 2108

5.7 Example

Prove that

1 1 1

/ +——dr =7y
o log(z) 1-=z
proof
Letz=et
oo 1 -t
[ S a
o et-1 t

Let the following

F(s) = fooo ett

T ttetdt = C(s+ DT (s + 1) - I'(s)

Hence the limit

£i£%F(s+1)(§(s+ 1)- %) = lim (s +1) _é

Use the expansion of the zeta function

C(s+1) = 7+Z ( s)"

Hence the limit is equal to vy = 7.

5.8 Integral representations

5.8.1 First Integral representation

(a) = /“ez (1+z)“

We begin with the double integral
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oo t 00 7% _ e—tz
f f e drdz = [ ——dz
0 1 0 z

Using fubini theorem we also have

t oo t 1
f / e **dzdr = f —dx =logt
1 Jo 1 x

Hence we have the following

oo z _ -tz
/ € 7° gz- log(t)
0 z

We also know that

IM(a) = _/0 t" et logtdt

Hence we have

0o 00 p,—% _ otz oo oo ta—l -t -z _ ta—l —t(z+1)
I(a) = f palemt (f e e dz) dt = f f ¢ ¢ ¢ dz dt
0 0 2 o Jo 2

Now we can use the fubini theorem

oo oo ta—l -t -z _ ta—l —t(z+1)
I'(a) = f f ¢ c ¢ dtdz
0 0

z

/ _ 1 -z a-1_—t a—1_-t(z+1)
I ( = - —
a) f (e f 1 et dt [ " e dt) dz
0o =z 0 0

But we can easily deduce using Laplace that

[ 177t g = T(a) (2 + 1)
0

Aslo we have

f t* et dt =T(a)
0

Hence we can simplify our integral to the following

I'(a) =T(a) fow Mdz

z

I(a) et -(1+2)
I'(a) la) = fo z dz
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5.8.2 Second Integral representation

1
1

11— 2%
1) = - d
P(s+1) 'y+f0 s
proof

This can be done by noting that

[}

S
AP R TCEn)

It is left as an exercise to prove that

(o] 11 _ S
Z s 1acdx

Zin(n+s) “Jo 1-z

5.8.3 Third Integral representation

0o ot e—(at)
- [ S - dt
b= [

1-et

proof

Letet =z

1 1 ot
[ - S
o log(z) 1-=z

By adding and subtracting 1

1o 1 1] - gt
—/ +—dm+/ 1=z dx
o log(z) 1-=z o l-xz

Using the second integral representation

L1 1 d (a)
_/0 log(x)+1—x vy +yla

We have already proved that

fl ! +idx—
o log(z) 1-xz -7

Finally we get

-t

® e e~ (at) B B
fo T—th-—7+7+¢(a)-¢(a)
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5.8.4 Fourth Integral representation

Prove that

1 oo
¥(z) =log(z) - % _2fo G +z2)t(e27f - 1)dt : Rez>0

We prove that

o0 t 1
2 [ sy i oe(x) — 5 v

First note that

m = COth(Tf—t) - ].
Also note that
1 2t & 1
coth(nt) = —+ — ) ——
(mt) Tt w kz::lk‘2+t2
Hence we conclude that
26 1 2t2 i 1
et -1 1 T fo k? e+t

Substitute the value in the integral

e 1 1 2t2 & 1
B TR .
[0 t2+z2{7r ™ kz_:lk;2+t2}

The first integral

L L
rdo #2+22 2

Since the second integral is divergent we put

[N;dt—llo (N? + 22) —log(2)
o 2+20 28 &

Also for the series

2 & e t? 31
= at=3.
migJo (124 22) (82 + k2) ok+z

Which simplifies to
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Now take the limit

: 1 2, .2 g Z
1\1[1£2°_§10g(N +2°) +log(2) +HN—kZ::1m
Or
Jim Hy - log(N) +log(z) - Z k(k )

This simplifies to

1 Z-

o8(:) 41~ 3 s <los() -~ (2)
Collecting the results we have

t

1 1 1
(12 + 22) (e2™ - 1)dt =log(z) + 2 o ¥(z) =log(z2) - 5 ¥(z)

59 Gauss Digamma theorem

Let p/q be a rational number with 0 < p < ¢ then

w(g)— 10g(2q)—fcot( )+2q/§1 os(

o)l ()]

proof
The proof is omitted.

5.10 More results

Assume that p = 1 and ¢ > 1 is an integer then

1/1(3) = ——log(2q) - gcot (g) + zq/ilcos(ng)log [sm(%k)]

So for example
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" (é) = %(—67—#\/5— 9log(3))
" (i) = %(—27—7r—610g(2))

) (1) =—y- %\/gﬂ'— 2log(2) - glog(i’))

511 Example

Find the following integral

f e " log(t) dt
0

We start by considering

F(b) = f e b at
0

Now use the substitution = = at we get

Fw= e (7)o

We can use the gamma function

- [ (2 a0

a

Now differentiate with respect to b

by = fo‘”e—x 1Og(£) (w)b - DO Db +1) log(a)l(b+1)

a a a ab+1 ab+1

Now putb=0and at =z

fo“’ e log(1) df = $(1) —alog(a) __ot 1Zg(a)

5.12 Example

Prove the following

1(1—x“)(1—xb)(l—x‘:)d 1 { T(b+c+ )T (c+a+1)(a+b+1)
0 (1-2)(-logx) v Fla+ DT+ DI(c+1)T(a+b+c+ 1)}

proof
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First note that since there is a log in the denominator that gives as an idea to use differentiation under
the integral sign.

Let

ot (1-2%)(1-2b)(1-2z°)
F(C)‘fo o) loga)  °

Differentiate with respect to c

N (1-2%)(1-zb)ze
F'(c) = —/0 - dz

By expanding

F( ) f — % — +xa+b)x o = fl € — potc _ gpbtc 4 xa+b+cdx
(1-2) 0 1-2)

We can add and subtract one to use the second integral representation

I _ ! (xc - 1) + (1 - a:‘“c) + (1 - xb"'c) + (xa+b+c _ 1)
F (C) N »/0 (1 _ x) da:

Distribute the integral over the terms

11— g€ 11 = pate 11 = pbte 11 — pa+tb+c
F,(C):—f i da:+f x da:+[ i dx_f - dx
0o 1-=z o 1l-=xz o 1-=z 0 1-=z

Which simplifies to

F'(e)=-yY(c+1)+y(a+c+1)+p(b+c+1)—p(a+b+c+1)

Integrate with respect to c

F(c)=-log[l(c+1)]+log[T(a+c+1)]+log[T'(b+c+1)]-log[T(a+b+c+1)]+e

Which reduces to

Ta+c+1)I'(b+c+1)
[F(c+1)1“(a+b+c+1):|

Now put ¢ = 0 we have

B F(a+1I(b+1)
o M

The constant
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~ F(a+1)I(b+1)
e——log[ F(a+b+1) ]

So we have the following

F(e) :log[F(a+c+1)F(b+c+1)] o [F(a+1)F(b+1)]

Fle+DI(a+b+c+1) Tla+b+1)

Hence we have the result

[1 (1—a:a)(1—xb)(1—xc)d 1 T(b+c+ I (c+a+1)I(a+b+1)
o (1-2)(-logz) x_Og{I‘(a+1)F(b+1)I‘(c+1)f‘(a+b+c+1)}

5.13 Example

Find the following integral

Let us first use the substitution ¢ = ax
Add and subtract e™*
Separate into two integrals
bt
o 1\ dt e a —e
[ -n) S e
0 1+t) ¢ 0 t
The first integral is a representation of the Euler constant when a = 1

We also proved

Hence the result




5.14 Example

Find the following integral

fooo e (i - coth(x)) dz

By using the exponential representation of the hyperbolic functions

oo 1 l+e™
f e | =~ ¢ dx
0 r l-e2=

Now let 2z = ¢t so we have

T )L _Lre”
/(; N (t 2(1—e‘t))dt

il @_(%t) e_(%t) +e(_L2t_t)
ﬂ t 2-et)

By adding and subtracting some terms

Rl e_t + e_(%t) — e_t e_(%t) + e_(%t) — e_%t + e_(%t)_t
/(; t 2(1-e)

dt

Separate the integrals

ot () e () _(F) e o (¥) ot
f £ ¢ dt+f S — dt+f R
o t 1-et 0 2(1-¢e7?) 0 t

By using the third integral representation

L wew(9)

The second integral reduces to

at

o 6_(7) —e %t_t) R e_(%) 1
fo 2(1-et) :fo ;=g

The third integral

By collecting the results

[ o (Lo o 3)- ()
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5.15 Example

Prove that

/‘x’ T dx 1¢(1+a) 1w(a) 2
S PV (i B (N I
0 xz2+1sinh(ax) 2°"\2 2x) 2"\2x/) =«

proof

f°° x dr ["" z dx
0 x2+1sinh(az) Jo 2+ a2 sinh(z)
= foo foce*at sin(zt) dtdx
o Jo sinh(z)
:f e_“t/ s'ln(xt) dx dt
sinh(x)
/ —at tanh( ) dt
)

2
= f e **tanh(x)dt ;z=—a
0 T

00 pTZT(] _ -2z
= f ¢ e ) (1-e) dx
0 e2r +1

By splitting the integral we have

* e _ —x(2n+z) dr
/(; e~ 4+ 1 nz>o f
Ry

so2n+z

o _ ,—(z+2) ~1)"
_/ %dwz—xi
0 e **+1 o Z+t2+2n

()]

Hence we have

[t e (-1
() 3)-
e 2) ()2



Leta=m/2

~ dz 1 (1 1 1 /1
e Y (el PV il I |
Ji 22 + 1 sinh(Zz) 2¢(2+4) 2¢(4)
e cot(m/4) -1

-~ -1
2
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6 Zeta function

Zeta function is one of the most important mathematical functions. The study of zeta function isn’t

exclusive to analysis. It also extends to number theory and the most celebrating theorem of Riemann.

6.1 Definition

1
C(s) = nz=:1 s
6.2 Bernoulli numbers
We define the Bernoulli numbers Bj, as
X _ i %mk
er -1 3 K

Now let us derive some values for the Bernoulli numbers , rewrite the power series as

5~ Br

z=(e"-1) x
kz:%)k:!

By expansion

1 1 B B3 .
x:(x+—x2+—x3+—x4+---)-(BO+B1x+2—'2m2+3—?m3+--~)

By multiplying we get

x:Box+(31+&)x2+(%+&+&)x3+(&+&+&+%)x4+m
2 320 2 40 30 2121 3!

By comparing the terms we get the following values

1 1
B():1731:_§+32:6133:01B4:_7

Actually we also deduce that

Bog+1 =0 , v keZ*
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6.3 Relation between zeta and Bernoulli numbers

According to Euler we have the following relation

2k1

k) = (- By

proof

We start by the product formula of the sine function

(-

Take the logarithm to both sides

2
og(sin(2)) - ou(2) = 3310 (1- - )

n=1

By differentiation with respect to z

cot(z) - —=-2 Z . ”2”2
~1-

n2 71'2

;
1- 7r2n2

By simple algebraical manipulation we have

zeot(z) = i

Now using the power series expansion

1 o L
= :Z TSR |zl <mn
1- 2n2 k=0 n=m
2 1 d 1 e 1
. _ Z S22 _ Z Lt
2 .2 22 - 2k+2 —~2k+2 - 2k 2k
nemeN\l- S koM ™ oy T

So the sums becomes

2k

N

zcot(z)zl—?i ini

n=

—
ko
—_
:‘ ‘

Now if we invert the order of summation we have

zecot(z) =1~ Qiiil_l 2ZC(%) ok

k=1n=1T

Euler didn’t stop here, he used power series for z cot(z) using the Bernoulli numbers.

Start by the equation
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By putting = = 2iz we have

Which can be reduced directly to the following by noticing that Bay.1 = 0

0o 2k

2 .
zeot(z) =1- Y (-1)" 1By, 22k
1;1 (2k)!

The result is immediate by comparing the two different representations.

6.4 Exercise

Find the values of

¢(4),¢(6), Bs, Be

6.5 Integral representation

1 oo ts—l

dt
I'(s) Jo et-1

¢(s) =

proof

Start by the integral representation

Using the power expansion

Hence we have

By swapping the series and integral

= ® s=1 _—-(n+1)t _ e ]. _
Zofo PO =T (s) X e = T()()
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6.6 Hurwitz zeta and polygamma functions

Hurwitz zeta is a generalization of the zeta function by adding a parameter .

6.6.1 Definition

>, 1
C(a"z) = ;}m ;C(a,l) = C(CL)

Let us define the polygamma function as the function produced by differentiating the Digamma function

and it is often denoted by

Yn(z) Y20

We define the digamma function by setting n = 0 so it’s denoted by 1y (z) .

Other values can be found by the following recurrence relation
P (2) = Y1 (2)

So we have

1(2) = ¥4(2)

6.6.2 Relation between zeta and polygamma

Vn>1

Vn(2) = (1) 0l ¢(n+1,2)

2n-2
2 7T2n

Pan-1(1) = (-1)" "' Bay,

proof

We have already proved the following relation

)

Yol =y -+ Y =

n=1 n(n + Z)

This can be written as the following

vo(z)=—y+ 3 1

iok+1 k+z

By differentiating with respect to z

59



P1(2) = i ﬁ

k=0

valz) = -2 Z  (k+ z)3

=2 32(k+z)4

¢4(Z)— -2-3- 42 (k+z)

Continue like that to obtain

[

Un(2) = (D)™l B e G

We realize the RHS is just the Hurwitz zeta function

U (2) = (—1)"+1n! C(n+1,2)

By setting z = 1 we have an equation in terms of the ordinary zeta function

(1) = (-1)"'nl¢(n+1)

Now since we already proved in the preceding section that

2k-1

2
2k) = (-1)*'B 2k
k) = () B oy
we can easily verify the following
n-1 22n—1 2n n-1 2271_2 2n
’(/)Qn_l(l) = (277, - 1)' (—1) Bgni(Qn)'ﬂ' = (—1) Bgn ™

This can be used to deduce some values for the polygamma function

2 4

(1) = va(l) = 2

Other values can be evaluated in terms of the zeta function

P2(1) = -2¢(3) , 1a(1) = -24¢(5)
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6.7 Example

Prove that

s 71'3

%
1 1 de = — - —
fo xsin(z) cos(z) log(sinx) log(cos ) dx = 6 10

proof

Start by the transformation z - 5 -z

™

fj xsin(z) cos(z) log(sinx)log(cosz) dx = % fg sin(x) cos(x) log(sin ) log(cos ) dx
0 0

We need to find

fi sin(x) cos(x) log(sinz) log(cos x) dx
0

Let us start by the following

F(a,b) = 2f 12971 (1) cos? 1 (z) dr F((“)+(b))

Now let us differentiate with respect to a

f(F(a b)) =4 f n2* () cos?" 1<x>10g(smx>dx:F(@F(b)(;ﬁmb—)wa(mb))

Differentiate again but this time with respect to b

% (F (a,b)) = 8/ 0271 () cos® 1 (x) log(sin z) log(cos x)dx

T(a)T(b) (¥3(a+b) +vo(a)to(b) = tho(a)tho(a +b) = tho(b)tho(a +b) + 1 (a+1b))
- T(a+)

Putting a = b = 1 we have the following

fog sin(x) cos(x) log(sinz) log(cos z)dx = Y6(2) +¥5(1) ~ vo(1)¢(2) - (L)Y (2) = ¥ (2)

8
By simple algebra we arrive to
Ed — 2_
f * sin(x) cos(z) log(sin z) log(cos z)dx = (0(2) 1/10(81)) “1(2)
0

We already know that (1) = -y and ¢9(2) =1 -~
Now to evaluate 1(2) , we have to use the zeta function we have already established the following

relation
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ad 1

Pi(z) =), (s

k=0
Now putting z = 2 we have the following
0@ =Y G
R =1CERR
Let us write the first few terms in the expansion
1 1 + ! + ! +
S (k+2)2 22 32 42

we see this is similar to {(2) but we are missing the first term

7T2

h@) =) -1-T -1
Collecting all these results together we have
3, . 1 72
f sin(z) cos(x) log(sinx) log(cosx)dr = — - —
0 4 48
Finally we get our result
f% xsin(z) cos(z) log(sinx) log(cos ) dx = T Lg
0 & & T 16 192
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7 Dirichlet eta function

Dirichlet eta function is the alternating form of the zeta function.

7.1 Definition
oo 1)n 1

n(s) =Z

The alternating form of the zeta function is easier to compute once we have established the main results

of the zeta function because the alternating form is related to the zeta function through the relation

7.2 Relation to Zeta function
n(s)=(1-2"")¢(s)
proof

We will start by the RHS

(1-2"*)¢(s) = ¢(s) —2"75¢(s)

Which can be written as sums of series

Nk

3

1
277

3

3
Il

—

Z*-2Z

s
=11 n=1

(2n

Clearly we can see that we are subtracting even terms twice , this is equivalent to

ad 1 1
z::l (2n-1)* 2 (2n)°

n=1

This looks easier to understand if we write the terms

( 1 1 ) (1 1 1 )
1+ —+—+ |- =+—=+—+-
38 5s 2s 48 63

Rearranging the terms we establish the alternating form

L N (- 1)" 1
1-—+— E =
2% 35 n=1 n(S)
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7.3 Integral representation
oo t571

n(s)I‘(s):f —dt

0o et+1

proof
Start by the RHS

o) ts—l 0o —tts—l
f dt = f c v gt
0o et+1 0o l+et

Now using the power expansion we arrive to

foo B_tts_ldt ( i (_1)ne—m‘,)
0 n=0

Z (_1)n f e—(n+1)tts—1dt

n=0 0

Using Laplace transform we can solve the inner integral

[oo e—(7n+1)tts—1dt _ F(S)
0 (n+1)®

Hence we have the following

) (_1)n L) (_1)n—1
r =T =T
(S)n;) e 1) (S)nZ::1 e (s)n(s)
An easy result of the above integral
o t 71_2
=I'(2)n(2) = —=
A a1 M=) =1
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8 Polylogarithm

8.1 Definition

°°Zk

Liy(2)=) —
Pl

The name contains two parts, (poly) because we can choose different n and produce many functions and

(logarithm) because we can express Li; (z) = —log(1 - 2).

8.2 Relation to other functions

We can relate it to the Zeta function

Li, (1) =

N
T~

-=((n)

T
A

In particular we have for n = 2

2

Lia(1) = ¢(2) = =

Also we can relate it to the eta function though z = -1

) o (_1 k
Ui (1= 3 C - )
k=1
Also we can relate it to logarithms by putting n = 1
ook
Lij(z)= 3 =
n=1 k

The power expansion on the left is famous

8.3 Integral representation

zL'
Liw(z):fo l"f(t)dt

proof

Using the series representation we have

k

le itk =3 L fztk’ldt S 2 Lina(2)
" T = T = T —Lln z
0t \iZg k" =1k Jo jm1 ket o
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8.4 Square formula

Liy(-2) +Lin(2) =

proof

As usual we write the series representation of the LHS

k=1
Listing the first few terms

+ ’ + 2 et + 2 2

st s i 2

on - 3n 2n 3n
The odd terms will cancel

2 4 6
PR LA L

Take 2'°" as a common factor

e ( LGP
2n 3n

8.5 Exercise

Prove that

w):

Lia(2) = - _/OZ
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8.6 Dilogarithms

Of all polylogarithms Lis(z) is the most interesting one, in this section we will see why!

8.6.1 Definition

_ = 2* “log(1-t
ng(z):z%:—/(; &dt

] t

The curious reader should try to prove the integral representation using the recursive definition we

introduced in the previous section .

8.6.2 First functional equation

-1 1 2
Liy (—) +Lig(-2) = —= log?(2) - T
z 2 6

proof
We will start by the following

-1 =1 -
Liz(*)=—f Mdt
z 0 t

Differentiate with respect to z

z

22

—~Li = -
z z

d (—1) 1 (_10g(1+i)):10g(1+i) _ log(1+2) -~ log(z)

Now integrate with respect to z

Lis (;1) - [ log(1=1) 4y - L10g2(2) 4 ¢ = “Lia(=2) - L1og?(2) + C
z 0 t 2 2

To find the constant C let z = 1

C = 2Li, (1)

Now we must be aware that

—r2

C = 2Lix(-1) = -20(2) = —~
Which proves the result by simple rearrangement

2

Liy (;1) #TLin(-2) = ~2log?(2) -
z 2 6
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8.6.3 Second functional equation

2
Liz(2) + Lig(1-2) = % —log(z)log(l-2) ,0<z<1

proof

Start by the following

Lig(z):—fozwdt

t

Now integrate by parts to obtain

Lis (2) = - _/OZ % dt —log(z)log(1 - 2)

By the change of variable ¢t = 1 — x we get

z 1-z —
f log(t) it :_f log(1-x) i
0 1

1-¢ x

ForO0<z<1

fl log(1 - x) dx:fllog(l—x) dac—/liz log(1 - x) da
1 0 0

-z X x x

Now it is easy to see that

fll Mdl« =-Liy(1) + Liz(1 - 2)

-z x

Which implies that
Liz (2) = Lia(1) - Lia(1 - 2) —log(z) log(1 - 2)

Lis (2) + Lia(1 - 2) = Liz(1) —log(2)log(1 - 2)
Now since Lis(1) =¢(2) = %2
Lis (2) + Lis(1-2) = % —log(z)log(1-=2)

We can easily deduce that for z = 1



8.6.4 Third functional equation

Lig(Z)+LiQ( ):—%logQ(l—z) z<1

z—1

proof
Start by the following

Li2( z ):_fz—l log(l—t)dt
z-1 0 t

Differentiate both sides with respect to z

d%Lb(Z:) B (2_11)2 (bg(;;l))

Upon simplification we obtain

Using partial fractions decomposition

2 Ls
2 z-1 1-2 z

dci ( z )zlog(l—z) +log(l—z)

Integrate both sides with respect to z

Lig( & ): L og?(1-2) “Lis(2) +
z—-1 2

Put z = -1 to find the constant

Lis (%) = —% log?(2) - Liz(-1) +C

Remember that

Hence we deduce that C' =0

Lig( : ) = —llogQ(l —-2z) - Lia(2)
z-1 2

Which can be written as

Lig( i ) +Lig(2) = —} 10g2(1 -2z)
z-1 2
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8.6.5 Example

Prove that

52w (5)

2 10 2
proof

First we add the two functional equations of this section to obtain

Lig( & ) + 1Lig(zz) —Lis(-2) = —110g2(1 -2)
z-1 2 2

S

1—
2

Now let z =

s 1-265+5 3-5 z  V5-1 3-5
A = p— = =
4 2 z-1 145 2

Hence we have

ng (3 _2ﬁ) " (ﬁz_ 1) - —%bgg (ﬁ; 1)

We already established the following functional equation

2
Liz(2) + Lig(1-2) = % —log(z)log(1-2)

B

Putz = 2=

Lb(g_?ﬁ)wb(ﬁ?_l):i_log(3_2ﬁ)log(ﬁ2_l)

V5-1

> ) we get our result.

Solving the two representations for Li, (

8.6.6 Example

Find the following integral
I /1 log(1 - x)log(z) de
~ Jo x

Integrate by parts

2O i) = 3 =)
k=1

1= -log(@)Liz(@)l} + [
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8.6.7 Example

Evaluate the following integral

xr 2 —_
f Mdt O<z<l
0

Integrating by parts we get the following

= Jog? (1 t) L12(t)
/(; dt = —log(1 - z)Liy(z) - /

Now we are left with the following integral

z T3 1 1 —
f ng(t) di = f L12(1 t) di
o 1-t¢ 1-x t

Using the first functional equation

/11 %2 — Lis(t) - log(1 - t) log(t) i

-z t

2 11 1 _
—%log(l—x)—f ngt(t) dt—f log(1 -t)log(t) gt
1-z 1

-z t

The first integral

fll LIQt(t) dt = Lis(1) - Lis(1 - )

The second integral is the same as the first exercise

.[1_1 M =Liz(1) +log(1 - z)Lia(1 - z) - Liz(1 - z)

Collecting the results together we obtain

E=a —%zlogu - ) = Liz(1 - 2)log(1 - 2) + 2 Lig(1 - ) - 2((3)

Finally we have

foz IOgQ(tl_t)dt =—log(1 - z)Lis(x) + %210g(1 —x)+Lis(1-2)log(1l-x)-2Liz(1 -x) +2¢(3)
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8.6.8 Example

Find the following integral

a
I :f d
(a) 0o et-1 *

1
l-e==

Start by the power expansion of

a T a Nad
I - / dr = / o~ -nx
(a) Al A Ye

n=0

By swapping the integral and the summation

I(a) =) [0 ze™( D g

n=0

The integral could be solved by parts

I(a) ~ i 1 ~ e—(n+1)a ~ ae—(n+1)a
S (n+1)2 (n+1)2 0 (n+1)

Distribute the summation to obtain

I(a) =¢(2) +alog(l-€e™®) - Lia(e™*)
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9 Ordinary Hypergeometric function

Ordinary or sometimes called the Gauss hypergoemtric function is a generalization of the power expan-

sion definition. Before we start with the definition we will explain some notations.

9.1 Definition

Define the raising factorial as follows

n=0
(Z)n B I'(z+n)

e n>0

Using this definition have

JFi(abiciz) = 5 {Wn0n 27

n=0 (C)n n!
9.2 Some expansions using the hypergeomtric function

We can represent famous functions using the hypergeomtric function

1. Logarithm

o n+1

290F1(1,1;2;-2) =2 Z_E)(lzggl)n(_;,)n = i(—l)" o ?j!l)!z"” = i(—l)”;+ 1= log(1 + 2)

2. Power function

2F1(a71;1;z) — i Mii — i (a)nzn _ (1_2)—11

n=0 (1)71 n: n=0 n!

3. Sine inverse

1 1 1
Dy 2 (3),3), 2 (3), A 2135201 5,
Which can be written as
= (2n)! - GO I .
ZzFl(%a%;%;ZQ):;)WZQ . :ngf *! = arcsin(2)

Now we consider converting the Taylor expansion into the equivalent hypergeomtric representation

Suppose the following
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2F1(a,b;c;2) = Ztkzk y to=1
k=0

Now consider the ratio

tre1  (K+a)(k+0)

th (kto)(k+1)

Using this definition, we can easily find the terms «, b, c.

Let us consider some examples

1. Exponential function

f(z)=¢
The power expansion is
o Lk
. z
fz)=e"=3 —
i=o k!
Hence we have
(7951 _ z
tr k+1
Comparing to our representation we conclude
¥ =2F1(=-1-:2)
2. Cosine function
=) (_l)kZQk)
f(z) =cos(2) = ), =
,;] (2k)!
By the same approach
tist 1 1 —22

B (k+2)(2k+1)  (k+1)(k+1) 4

Hence we have

1 - 2
cos(z) = oFy (—,—;Q;Z)
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3. Power function

£ = ()= 3 D

By the same approach

tht1 (k:+a) (k+a)(k;+1)z
L (k+1) (k+1)(k+1)

Hence we have

(1-2)"%=9F(a,1;1;2)

9.3 Exercise

Find the hypergeoemtric representations of the following functions
arcsin(z),sin(z)

9.4 Integral representation

1 tb_l(l _ t)c—b—l

B(c—-b,b)2F1(a,b;c;2) = '/(: (1=t2)

proof
Start by the RHS

1
f (1 =) (1 —t2) ™ dt
0

Using the expansion of (1 —tz)™® we have

[ tb 1(1 t)(' b-1 Z (a)k k’

Interchanging the integral with the series

a)k kf tk+b 1(1 t)c b— 1dt

Recalling the beta function we have

& (a) L(k+b)T(c-b) 2*
;) T(k+c) k!
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Using the identity that

Blc—b,b) = F(b)rr((cc)'b)
and
L(z+k)
r'(z) (=)
We deduce that

B(c—b,b) Z (a)rT(k+b)(c) 2F

(a) (b) P
i TOI(k+c) K (—bb)];) o k!

9.5 Transformations

1. Pfaff transformations

2F1 (a,bic52) = (1-2) "2 14 (a,c—b; o — 1)
P

and

oFy (a,b;¢;2) = (1-2) "5 Fy (c —a,b;c; —— 1)
P
proof

Start by the integral representation

1 tb_l(l _ t)c—b—l

1
2 b (a,b;c;z): ﬁ(b,c—b) A (1—tz)a

By the the transformation ¢t — 1 —¢

1 _ 4\b—-14c-b-1 1 _ 4\b-14c-b-1
(1-t) "¢ dt = / (1-¢t)1¢ gt
0o (I-(1-t)z)e 0o (1-z+tz)®

Which can be written as

(1-2)"
B(b,c—b)

1 2 -a
tet (1 - 1)o7t (1 —t ) dt
0 z-1

Note this is the integral representation of
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(1-2)"%F (a,c—b; c; L)
z—1

Also using that

2F1 (a,b;¢;2) = oF1 (b, a;¢;2)

We deduce that

o F1 (a,byc;2) = (1-2) "o Fy (C—a,b;c; : 1)
oo

. Euler transformation

oFi (a,b;c;2) = (1= 2)* "5 Fy (c—a,c - b;c; 2)

proof

In the Pfaff transformations let 2 — ]

oI (avb; ¢ : 1) =(1-2)"%Fi(a,c-b;c;2)

z -

and

oF (a, b; ¢; il) =(1-2)"F (c-a,b;c;2)
o

By equating the two transformations

(1-2)"%F (a,c=b;¢;2) = (1- 2) % Fy (c—a,b; ¢ z)

Now use the transformation b - c—b

(1-2)""%F (a,b;¢;2) = (1 - 2) " F) (¢ —a,c-b;c; 2)

Which can be reduced to
oFi (a,b;c;2) = (1= 2)"* "5 Fy (c—a,c - b;c; 2)
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9.6

Quadratic transformation

a a a 1 22
F b;2b;2)=(1-2)"2oF | =,b— —;b+—;——
2 l(aa ) 72) ( Z) 2 1(27 2a +274Z—4)
Kummer
oF (a,b;¢;2) =oF1 (a,b;1+a+b-c¢;1-2)
Special values
Atz=1

T'(c)T'(c-a-b)

2Fi(a, b 1) = I'(c-a)l(c-a)

Start by the integral representation at z = 1

1 . b
2F1(a,b;c;1):m[0 tb 1(1—t) b 1dt

Now we can use the first integral representation of the beta function

1 L®)(c-b-a)
B(c—-0b,b) I'(c-a)

2Fi(a,byc;1) =

Which could be simplified to

QFl(a,b;c; 1) - F(C) ) F(b)r(c— b-— a) ~ F(C)F(c— a—b)

L(b)I(c-b) I'(c-a) " I'(c-a)(c-a)

Atz=-1

F(1+a-b)I'(1+%)
F'(1+a)l'(1+§-0b)

QFl((Z,b; 1+ (Z—b;—].) =
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10 Error Function

The error function is an interesting function that has many applications in probability, statistics and

physics.

10.1 Definition
_ 2 [t
erf(x)—\/Ev[0 e’ dt

10.2 Complementary error function

erfc(x) =1 -erf(x)

10.3 Imaginary error function

erfi(z) = —ierf(ix)

10.4 Properties

1. The error function is odd

erf(-z) = % /Oix e dt = —% 0:1: e dt = —erf(x)

2. Real part and imaginary parts

_ erf(z) +erf(z2)

Rerf(z) 5

erf(z) —erf(z)

Jerf(z) = 5
i

Using complex variables it can be done using erf(z) = erf(z)

10.5 Relation to other functions

1. Hypergeomtric function



proof

By expanding the hypergeometirc function

Which can be simplified to

2x 13 2) r & (-2?)F
iadiny AN [l S N S
NG 1(2’2’ * \/7?,;)(%+k)k!

Notice that this is actually the expanded error function

r oo (—$2)k 2

2 [T . 2 o
= dt = —— dt=—3 2
ﬁfo ¢ v Jo ,CZO k! 7r,;0(2k+1)k!

. Incomplete Gamma function

proof

By the definition of the incomplete gamma function

Let t = ¢/?

We have already proved that

2[ e_y2dy:\/7_r
0

Hence we have using the definition of the error function
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F(%,xQ) = /1 - /merf(z)

By rearrangements we get our result.

10.6 Example

Find the integral

I:f e dt
0

The function has no elementary anti-derivative so we represent it using the error function.

Consider the imaginary error function

erfi(x) = —i% fol et dt

By differentiating both sides we have
Hence we have

By integrating both sides we have

10.7 Example

Prove that

[Ooo erfc(x) dx = %

proof

Using the complementary error function
f (1 -erf(x))dx
0
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Integrating by parts we have

I=2z(1-erf(x)) ]8°+%/(;mx67m2 dx

Now we compute erf(oco)

2 2 2
erf(oo):ﬁfo et dt:ﬁx\/le

So the first term will go to zero. The integral can be solved by substitution

-2 foo e dy =
= — T Tr=—
v Jo N3

10.8 Example

Prove that
/ erfc®(z) dx = 2-v2
0 NZs
proof
Integrate by parts

I = zerfc®(z) | —Qmexerfc'(x)erfc(:v)dx

The first integral goes to 0

I=-2 foo verfc' (z)erfc(x) dx
0

The derivative of the complementary error function

erfc’(z) = (1 - erf(z))’ = —%e*f
That results in
1= 4 /ooxefzzerfc(x)dx
v

Integrate by parts again
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At infinity the integral goes to 0. At 0 we get

2 2

leimzerfC(I)];c:O = ~ (1 - erf(O)) =

Vr v VT
The integral can be evaluated to
f e 2t dt = —ﬁ
0 22
Collecting the results together we have
po2 VA A 2V
VT2 o T
10.9 Example
Prove that
o0 - 2coth™ /2
f sin(x?)erfe(x) dx = m
0 427
proof

Using the substitution = = NS

% [ sineyeterte(vi) di
0

Consider the function

I(a) = % fo ” sin()tFerfe(av/?) di

Differentiating with respect to a we have

-1 e 2 -1 1
I =—f in(t)e *tdt= — — —
(a) VT Jo sin(t)e NZENE

Now integrating with respect to a
-1 o dx
I(a) = —= / ¥ e
(a) VrJo zt+l
To evaluate the constant we take a - oo

-1 > dx

I(oo):ﬁ 0 x4+1+C
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The function has an anti-derivative and the value is

e de VT
vrdo ziel 22
Note that
NZS
erfc =0 = (C=—"—
(c0) Vi
Finally we get

e VT
”“)—ﬁfo 71 0

Let a = 1 in the integral

I(1) = fooosin(xQ)erfc(g:) dx = 2\\/2 _ \/1%/01 %

Also knowing that

4 +1 N

L[l dx 7+ 2coth™ /2
VT Jo

Hence we have the result

oo _ -1
/ sin(z?)erfe(z) dx = M
0 427

10.10 Exercise

Can you find closed forms for
f erfc®(z) dx =?
0

foo erfc* (z) dz =?
0

What about

f erfc" (z) dzx =7
0
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11 Exponential integral function

11.1 Definition

oo ,—1 oo ,—It
E(a:):/ %dt:f et dt
T 1

11.2 Example

Prove that

tim [log(2) + £(x)] =
proof

Integration by parts for E(x)

E(z)=e"log(t) 17 + fzm log(t)e™ " dt

The limit at infinity goes to zero

E(z)=-e"log(x) + fwoo log(t)e " dt

Hence by taking the limit

iii% [log(z) + E(x)] = ii_r}r& (log(z) —e " log(x)) + /OOO log(t)e " dt

The first limit goes to 0

lim [log(2) + E(2)] = [ log(t)e™" de = (1) =~

11.3 Example

Prove that for p > 0

L'(p)

pa®

[ 2P E(ax) dx =
0

proof
Integrating by parts we have
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Sl 1 o 1 1 —ax
f P EB(ax) dr = 2P E(ax) |5 + —f P~ e O dy
0 D ap Jo

The first limit goes to 0

1 oo 1 oo T
L xp_le_ax do = — xp—le—z dr = (p)

ap Jo paP Jo paP

114 Example

Prove the general case

f :Ep_le”E(ax) de = ——— T_. L(p)
0 sin(ar) aP

proof

Switch to the integral representation

oo oo ,—t
f :Up_le“x[ C dtde
0 axr t

Use the substitution ¢t = ax y

o oo —az(y-1)
f f a:p_leidydx
o Ji Yy

By switching the two integrals

fwlfmxp_le_“m(y_l)dxdy
1 yJo

By the Laplace identities

L(p) = 1
ar J1 y(y-1)P

Now lety =1/z

L(p) !

P11 _ ) Pd
) (1-2)Pdx

Using the reflection formula for the Gamma function

1
F(p) mp—l(l_x)fpdz: : ™ . F(p)
ab Jo sin(am) aP
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11.5 Example

Prove that

ooZE2 d:l
/Oe (2)dz G

proof

Using the integral representation

) 00 o~TZ Y2

oo 9 oo oo oo B,Z(I+y,1)
/ e*E*(z)dz = [ / f ————dadydz
0 o J1 1 xy

Swap the integrals

/mlfool fooe’z("”y*l)dzdacdy
1 yJ1 oz Jo

© 1 [ 1
/ 7_/ —dxdy
1y z(z+y-1)

The inner integral is an elementary integral

f°° 1 d = _108()
1 z(z+y-1) 1-y

The integral becomes

f°° log(y)
1oy(y-1)
Now use the substitution y = 1/z

2

Vlog(z) ,  ['log(l-z) 7= Lin(1) = —
~Jo (1—x)dx_ fo T dr=Liz(1) = 6

11.6 Example

Prove that

oo 2
f ZT"lEQ(z)dZ:#gFl(p,p;p+1;—l)
0 p

proof
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Consider

oo ,—t
E2(z):f ert

By differentiation with respect to z
2¢*E
2B (2)E(z) = 2¢7°E(2)
z

Knowing that we can return to our integral by integration by parts

2 5]
- f e B(2)dz
p Jo

Write the integral representation

2 oo oo ,—2t
— / 2P le? f C  dtd»
p Jo 1 t

Swap the two integrals

gfmlfoozp’le’z(“t) dzdt
pJi1 tJo

The inner integral reduces to

2I(p) [~ dt
D fl t(1+t)r

Use the substitution ¢ = 1/x

2F(p) ab!
f (1+x)1’

Using the integral representation of the Hypergeometric function

1 $b71(1 _ x)c—b—l
B(C—b7b)2F1(a,b;C;Z):/0‘ wdfﬂ
Letc=p+1,b=p,a=p, z=-1
1 pp-l
1,p)oFy(p.pip+1:-1 :f d
FLp)2Fa(ppip+1i-1) = | Trap @

Hence the result

IR O (”) 2Fu(p,pip+ 13-1)
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Where

I'p) _1
@ 17p = =~
(12) I'(p+1) p
11.7 Exercise
Find the integral fo n € N
foox"Ez(x) dx
0

89



12 Complete Elliptic Integral

12.1 Complete elliptic of first kind

K(k)—f% do _fl dx
0 V1-k2sin?0 Jo V1-22V1-k222

12.2 Complete elliptic of second kind

1 \/1_k2x2d

Ek=/§ 1-k2sin?0do = | ———
(k) ; sin o i x

12.3 Hypergeometric representation

T 11
K(k)==,F 7,7,1,18)
(k) = 52 1(2 2
and
T 1 1
E(k)==,F 7,—7,1,18)
(k) =32 1(2 2
proof

Using the integral representation of the hypergeometric function

1 4b=171 _ 2\c-b-1
B(c=b,b)2F1(a,b,c,z) = fo t((ll—ttz))a

Now use the substitution ¢ = 22 and z = k2

2b-1 (1 _ x2)c—b—1

d
(1 - k2a2)e v

1
B(C_b7b)2Fl(aabacak2):2[ e
0

1 da 1 11
==5(1/2,1/2) o F —,—,1,k2)
/o i 2 MR 1(2 2

By the beta function we have

oo el)

Hence the result

11
272

T
*2F1(

K=

,1,k2)
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By the same approach we have

s 1 1
E(k) = §2F1 (57—57 1ak’2)

124 Example

Prove that

folK(k)dk -G

G is the Catalan’s constant.

proof

Start by the integral representation

dz dk

1,1 1
A A i
o Jo 1-22vV1 - k222

Switching the two integrals

1 1
I:[ f dk d
0 V1-z2Jo V1-k222

1 arcsinz

= [ ST
0 zvV1-2a2

Now let arcsin z = t hence we have x = sint

Tt
1':/2 L
0 sint

The previous integral is a representation of the constant

12.5 Identities

1. Fork>1

K(Vk) = 11—kK( 1:1)

and
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E(Vk) :\/1—kE( kk_l)

proof

Starting by the integral representation

1 dx
KW= [, =

Use the substitution x = /1 - y?2

/1 ydy
0 1-12/1-(1-y?)/1-k>(1-3?)

By cancelling the terms we have

dy

1
fo V1-92y/1- k2 + k2y2

Take V1 — k2 as a common factor

b ——
0 1-k2\/1-y2 1—k§i1y2

Comparing this to the integral representation we get

1 k2
K(k) = 1_k2K( k2—1)

We can finish by & - V&

Similarly for the second representation

E(\/E):fol 1-ka?

V1-2a2

By using that z = /1 - y?

1 _L
E(\/E):\/l—k:f V\;l_k_lydy:\/l—kE(
0 —y2
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1 2k
K““)ZMK(M)

proof

Start by the Quadratic transformation

4z
(1+2)2

Hence we can deduce by putting a = b =1/2

1 1
2F1(a,b,2b, ):(1+z)2a2F1(a,a—b+2,b+2,z2).

K(Z\/E
1+k&

): (1+k)K (k)

Or we have

1 2k
K(k) = k+1K(1+k)

NERENEE

1+k) 1-k \1-k
and
s(05) - (i)
proof
Start by the following

2Vk 1 1
K(\/;) - f dz
1+ 0 V1-22./1- (1?]2)2%‘2

By some simplifications we have

2k 1 1
(1 k) +k)fo \/1—x2\/(1+k)2—4kx2dx

Usez =+/1-12

/‘1 1+k 1+k/‘
0 T-y2/(1+k)? -4k (1- y2) V1o ,/1+
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Hence we have

K(fﬁ):i:K(Qy—__:)

Similarly we have

s(10) (i)

12.6 Special values

1.
1 (1
K(i)= =t (Z)
and
o) @)
E@) = N + N
proof

By definition we have

=3

Letz = (‘/Ewehavedx:i

1 rt s
K@= [ tFa-nFa
By beta function
,_TEIrG)
K(Z)_ 3
4r(3)

By reflection formula

LorHriz) @)
K@) - 4m2 A2r
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By definition we have

1+ x2
2= [,
V1-22?
Separating the two integrals

1+ 22 2

¢— J—d“/ s

The first integral is K (i) for the second integral use = = v/t

E(i) = dx

1 1 3 1 1
Sttt a-t)rat= -
i), tasy () v

Hence we have

™)
—~
|00
~
=
N
—~~
N
N
ap!
[
—~~
|
N

and
()0 )
v2) 8T 2ym
proof
Start by the identity

For the value k = -1

Using the value for K (¢)
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K(12) =V2K(i) = ﬁﬁ (i)

Similarly we have

a5
K(2 —4+3¢§) = 14;;%%2(411)
and
E(2 —4+3¢§) = 11/35[22\(/%) + F;(E)]
proof
Start by the identity
K(k) = kilK(fﬁ)

Hence we have for k = -1

S

K(2 —4+3\/§) - 1}?1{(;5) - ZT/;_EFQ(D

For the elliptic integral of second kind using the hypergeomtric representation with a = 5 and

_1
b=3

4z 1 2
o Fy (—1/2, 1/2,1,(1+Z)2) = (1+2) 2 (-1/2,-1/2,1,2%)

The later hypergeometric series can be written in terms of elliptic integrals using some general

contiguity relations

oFy (-1/2,-1/2,1,2%) = % (2B(k) + (K* - 1)K (k))

So we have

2E(k) + (K> -1)K(k) = (k+1)E (M)

1+k
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Fork:%
E(2 —4+3¢§) f/_[rs\i_) F;(_i)]
4.
K(2 —4—3%5):“/_ i (\g
and
C(2+V2) (72 44T (3))
E(2 —4—3\/5)- 1T (5)
proof

Start by the following identity

e(7)- e (5

Letx = 1/\/5

S

K(2 —4—3\/§)= Wf?;(g)

(2+V2) (72 +41* ()
4/71%(1)

E( 43\/_)

12.7 Differentiation of elliptic integrals

Note We should remove the variable k¥ and denote elliptic integrals £ and K once there is no confusion.
It is assumed that the variable is £ when we use these symbols.

Interestingly the derivative of elliptic integrals can be written in terms of elliptic integrals

Derivative of complete elliptic integral of second kind

d 19 .\/1 - k242
E Ok T 7 dx

Pl My

d —k 22
—E:f
dk 0 1-22V1- k2$2

Adding and subtracting 1 results in

f \/1—]€2$2 _1 1 dx
k V1-22 kJo /1-22V1-k222
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Upon realizing the relation to elliptic integrals we conclude

d PR E-K
dk k
For the complete elliptic integral of first kind we need more work

Start by the following

0 1
— d

ka?

= dx
/(; V1-22v1 - k222(1 - k222)

Adding and subtracting 1 we have

1-ka? - f dx K
k /(; V1-22v1- k2x2(1 K2z 2) Tk V1-22V1-k222(1 - k2 2) k
Let us focus on the first integral

1
—dx
b =y

_ _ 1
Let z = /t and we have dzx = 2\/Edt

1
2

dz
2 V1 1—k2t)2

Using the hypergeometric integral representation

1

-2

2[ ¢—<1 ey §2F(3 1,1,k2)

2’92
Using the linear transformation

oFy (a,b,¢,2) = (1-2)"" 3 F (c-a,c-b,c,2)
We get by putting &' = v/1 — k2

31 ., 1« 11 2) E
F 1k —oF -2, 2,1,k =
21(2 277 ) —k222 1( 27277
So finally we get



13 Euler sums

13.1 Definition

oo (ngp) )T‘
S - =
P q kZ::l ka

Where we define the general harmonic number

HO - Z . 1O = 1, Zl

Euler sums were greatly studied by Euler, hence the name.

13.2 Generating function

Proof

(p)

Start by writing H,"’ as a sum

k=1n=1

oo o k 1
St -5 5 Lo
k=1 n

By interchanging the two series we have

> 7 > oy > z*
n=1k=n T n=1 " p=n
The inner sum is a geometric series
Liy(z)

1 & 2"
- =1 nP

We can use this to generate some more functions by integrating.

1-z

13.3 Integral representation of Harmonic numbers

11— gm
H”:f x dx
o 1-=x

proof

We can use the geometric series of 2"




13.4 Example

proof

Using the integral representation

[ S, [ e,
0 0

1-z /7 n? 1-z

Now use the functional equation

¢(2) - Lig(z) = Lio(1 - x) + log(x) log(1 - x)

Hence we have

[1 Liz(1 - z) +log(z) log(1 - x) iz
0 -z

The first integral

[T =)

The Second integral using integration by parts

log(1-x)log(x) , [l Lia(z)
A B ()

T €T

Finally we have

3 = () +((3) = X )
13.5 Example
ki %x =Liz(z) - Liz(1-z) + log(1 - z)Lis(1-z) + = log(ac)logQ(l -xz)+¢(3)
1

proof

In the general definition assume p = 1

100



& log(1 -
$ gyt - lo8)
k=1 l-=

Divide by z and integrate to get

Hy, 1
? :Lig(l')+§10g2(1—x)

Now divide by = and integrate again

= He p 1 1 r=log?(1-t)
Thyk o1, 7f 28 70 g
Z:: k2 13(96)4—2 0 t

Now let us look at the integral

x] 2 —
f og (1-1t) .,
0 t

Integrating by parts

fom log” (1 —t) dt = —log(1 - z)Lis(z) - f Ll2(t)

Use a change of variable in the integral

z T3 1 1 _
f ng(t) di = / ng(l t) dt
o 1-¢ -z t

Now we can use the second functional equation of the dilogarithm

fl T Lia(t) - log(1 - ) log(t) @t

-z t

Separate the integrals

2 11 1 _
—%log(l—x)—f ngt(t) dt—f log(1 -t)log(t) gt
l1-z 1

-z t

The first integral

fll LIQt(t) dt = Lis(1) - Lis(1 - )

Use integration by parts in the second integral

.[1_1 M =Liz(1) +log(1 - z)Lia(1 - z) - Liz(1 - z)

Collecting the results together we obtain
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n L112_(t)dt—‘Elog(1 #) = Lia(1 - 2) log(1 - ) + 2 Liz(1 - ) - 2((3)

Hence we solved the integral

Aw IOgQ(tl_t)dt =—log(1l - z)Lis(x) + 7%210g(1 —x)+Lis(1-2)log(l-z) - 2Lis(1 - z) +2¢(3)

So we have got our Harmonic sum
Hy,
1 k2

=Lig(x) + % ( log(1 - z)Liy(z) + %2 log(1-x) + Liz(1 - xz)log(l —z) - 2Lis(1 - ) + 2{(3))

&

=Lig(x) - Lis(1 - z) + log(1 — z)Lis(1 —z) + %log(x) log?(1 - ) +¢(3)

M3
%

el
I
—

13.6 General formula

Tii?:(1+;])C(Q+1)—;ZZ_:_1C(k+1)g(q_k)

This can be proved using complex analysis.

13.7 Example

fl log?(1 - z)log(x) _ _L‘l
0 x 180

proof

Using the generating function

i Hkxk‘fl — _log(l - 'I)
k=1 z(1-x)
By integrating both sides
= Hy, 1
> L Liy(z) + = log?(1 - )
=1k 2

log?(1-z) = 22 S ¥ _oLiy(x)

plugging this in our integral we have
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2 (35 Bt - 1)) 252 o

k=1

Which simplifies to

= H, 1 , 1 1
2y =k [ log(z)z* 1t dax -2 f Lig(as)M dx
-k Jo 0 x

The second integral

—QAlLig(x)@dx:2[01U3dex:2<(4)

The first integral

i % f #* 1 log(z) da

Using integration by parts twice and the general formula for ¢ = 3

Hy,
k3

23 G =R+ )

Finally we get

[1 log?(1 - z)log(x) _

. =50(4) +¢*(2) +20(4) = ¢*(2) - 3¢(4)
13.8 Example

Show that

oo 2 2
f (bt)logt ) (log(a”?) +7) arctan(é)
0 2 a

Proof

We can start by the following integral
I(s) = f 57t e sin(bt)dt
0
By using the the expansion of the sine function
1)n(bt)2n+1

s—1 —at (
I(s) = f t nzo T(2n +2)

By swapping the summation and integration
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DG L on (=D)"()*"'T(s +2n+1)
I(s) = nz%)m 0 t e dt = 7;) T(2n + 2)azd

By differentiating and plugging s = 0 we have

I'(0) = i (_D%W(z)%ﬂ sl )Z (-1)" ( )2n+1

four 2n+1 02n+1

Now use that ¢ (n+1) +~v = H,

I'(0) = i (D" Han =y (b)2n+1 - log(a) arctan (g)

fouur 2n+1 a

I'(0) = Z GV Han (b)2"+1 - (’y+log(a))arctan(2)

o 2n+1 a

Now we look at the harmonic sum

oo 1 t2k}

S (1) Hopa® Z( 1k Qkf ﬁdt

k=0

Use the integral representation

(-1)F2?* (1-12%) dt

|
h

gMS

Swap the series and the integral

11
b

(-1)* (x% — (xt)?) dt

gM%

Evaluate the geometric series

f11(1_1)t f (1-12) "
o 1—-t\1+22 1+¢2a2 1+x2 (1-#)(1 +t2x2)

which simplifies to

—z? 1 1+t —z? 11 t
dt = f + dt
1+22 Jo (1+1t2a2) 1+22\Jo 1+¢222 1+1¢222

Evaluating the integrals

1
m (296 arctan(z) + log(1 + 5’32))

Using this we conclude by integrating

Z( 1) H2k' 2k

1
——log(1 + 2* t
P T 5 og(1+ z*) arctan(z)
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Hence the following

(=) Hyp (DN 1 a? + b2 b
Z ( ) =——log arctan(f)
= 2k+1 \a 2 a? a

Substituting that in our integral

- 1 2,12
f e~ sin(bt) Ogtdt__(log(a o )+fy+log(a))arctan(b)
0 2 a? @

2, 12
() (2)
2 a

13.9 Example

[01 Lip(2) Lig(x)

xT

= pz::(—l)n—lc(p_n+ D¢(g+n) - ;wzq:_l (_1)P—1C(n+ D¢(p+qg-n)
+ (- 1)”1(1+ 5 )C(p+q+1)

proof

We can see that

T

VLip(2) Lig(z) , & & 1
/0 dm‘,;n; ke (n+ k)

Let us first look at the following

- 1 H,
=S —— . 1.k) ==~
fg(a, ) nzz:l na(n"’k) ? %(7 ) k

This can be solved using

ad 1 1 1
Clak)=S — [~ -
(e k) ;knwl (n n+k)

1 1
- 20(@) = € 1k)

1 1 1
= %C(@) - ﬁ((@—1)+ ﬁ‘é(a—lkz)

:1<<a>—i<;<o¢—1>+---+<—1>“@+,€1 o= (a-1).)

_Z( 1)n IC lHk

n=1

(- n+1) (1)
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Hence we have the general formula

E a-n+ ,
ok = 3y T e

Dividing by £? and summing w.r.t to k

k) ai( 1" ¢(a—n+ 1)C(8 +n) + (-1)° 5

oo
2
k=1

Now we use the general formula

q-2
S (14 D) e -5 k16
k=1

1 ng

Ngk

n

Hence we have

) a+pB-2
> = (1 ) - 5 3 k)5 b)

And the generalization is the following formula

a a-1 a+p-2
Cg( k) /;(—1)"’14(04 -n+1)((B+n)- % 2:21 (—1)0"1C(n +1){(a+ B -n)

o (~1)t (1 . O‘T”g)g(mm 1)

oo
2
k=1

We conclude by putting that

13.10 Relation to polygamma

We can relate the generalized harmonic number to the polygamma function

_1(k+1)
H(P) =((p) + (-1 pflw;ﬂ 1(
proof
-y Lo 3 L
SR k1 P
Now change the index in thesumn =i+ k+1
R Y B P s
A= g =0 (i+k+1)P
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We know that

’l/)p_l(k+1) :i 1

O T & ket P21

Hence we have

AP = () -1y D

We can use that to obtain a nice integral representation.

13.11 Integral representation for r=1

dxr

o H,gp) ~ 1 1 Liy(z) log(z)P~t
T 0@ (Y ey T
proof
Note that

1-z°

1
wo(a+1):f0 - dz

By differentiating with respect to a , p times we have

0 11-2g°

= — d
Oa? Jo 1-x o

Yp(a+1)

Ppla+1)=- /01 2" log(@)” dzx

l1-z

Leta=k

1 gk log(x)P~!

dzr
1-x

ks 1) == [

Use the relation to polygamma

1 ! pl
f " log(z)"™
0

H =) + (D' =5, o

Now divide by £ and sum with respect to k

dx

< [P , 1 1 Lig () log(a)P!
X S =N @ - (D A e
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13.12 Symmetric formula

co H(p) o H(Q)
2 m +Zl 1 = C(P)(a) +C(p+a)

k=

proof

Take the leftmost series and swap the finite and infinite sums

I

1
P kT o

<.
Il

=

ke

The second sum can be written as

oo IEQ)
-¢(p+q)

Hence we have

(p) (q)

> = (p)a) - 3 T e a)
k=1 k=1

co () oo (9)

S S ) o)
k=1 k=1

For the special case p=¢g=n

13.13 Example

oo (3)
> B 1EB) o)

2
k=1 k

proof

Using the symmetric formula

S = 7
=((2)¢B) +<¢(5) -

Using the integral formula on the second sum

(2)
B @+ [ @),

>

k=1
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Using integration by parts on the integral

! Lig(x)log(z) .~ ! Lig(z)Liz(1 - x)
/0 ————dzr = /(; —————dx

l1-z T

Let us think of solving

fl LIQ(JZ)LIQ(I —.I) da
0

xT

Using the duplication formula

Lig(1-2) = {(2) - Lia(x) — log(x) log(1 - x)

[ iz )62) - i) o) og(1 =),
0

T

The first integral

) [ = )¢9

The third integral
/‘1 Liz(x)log(z)log(1 - a:) 1 L12(Jj)
0 T "2 T
Finally we get
I Lig(z) log(z 1 Li3 Lij(z)
o 1-xz 2
So

oo (2) fl le(l‘)
k 1 k3 T2

Hence we finally get that

(3)

5 T - @ (o) -3 [ 22

Let us solve the integral

fl LiZ(x) "
0 X

By series expansion
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This can be simplified to conclude that

'Lij(a) s
fo L da = ((2)C(3) - gg
Now using that
,i B _3¢(5) - C2)¢(3)
Hence
.2
fl L@@ 40— o2c@)c3) - 3¢(5)
0 X
Finally we get

oo (3)
,;1 h;z =C(2)¢(3) +<(5) - 7(24(2)4(3) 3¢(5)) = L()

2¢(2)¢(3)
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14 Sine Integral function

14.1 Definition

We define the following

Si(z) = foz sin(z) dz

T

A closely related function is the following

si(z) = - /;oo sinfr;) dz

These functions are related through the equation

Si(z) =si(2) +g

A closely related function is the sinc function

1 z=0
sinc(x) =
sin(z)

z+0

Using that we conclude

d . .
%Sl(.ﬁ) = sinc(x)

For integration we have
f Si(x) dx = cos(z) + zSi(x) + C

14.2 Example

Show that

fooo sin(z)si(x) dx = —%

proof

Using integration by parts we get

[T, 1 e

T 2 Jo x
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Let2z =t

1 o a1
“f sin(t) , 7
2 Jo t 4

14.3 Example

Prove

/Ooo z* si(z) de = RAC) sin(%)

(0%

proof

Using the integral representation

—fooxafl /mwdtd:c
0 x t

Letaxy=t

_\/‘ooxafl be Sln(zy) dydl’
0 1 Yy

Switching the integrals we get

oo 1 oo
—/ *f 7t sin(zy) de dy
1 yJo

Now letzy =t

(o] 1 ] a1 .
—fl ya“/o t*7" sin(t) dt dy

The Mellin transform of the sine function is defined as

M (sin(z)) = /Ooo 2 sin(z) da = T'(s) sin (%5)

Hence we conclude that

_F(a)sin(%)/;m yal+1 :—ysin(%)



14.4 Example

Show that
_arctan(a)

e T 2 d —
fo e *Tsi(x) dx

proof

Use the integral representation

—[ooe_w” foo%dtdm
0 x t

Letazy =t

_ / p-ae f S02Y) 4 de
0 1 Y

Switching the integrals

[e] 1 ]
—f ,f e % sin(xy) dx dy
1 yJo

The inner integral is the laplace transform of the sine function

. a
ES(Sln(at)) = m
Hence we conclude that
f < 1 _arctan(a)
1 y2+a? 7 o

14.5 Example

Prove the following

[Ooo si(z)log(z)dx =v+1

proof We know that

[ z* si(x) dx = RAC)) sin (B
0 « 2

Differentiate with respect to «
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2

2 o 2 2

fo"" 2% tsi(x) log(x)dx = FC(MQ) sin(B) - M sin(m) - LW) cos

Leta—1

/Ooosi(x) log(x)dr=1-9¢(1)=1-(-y) =1+~

14.6 Example

Find the integral

f si(z) sin(px) dx
0
solution

Using integration by parts we get

si(z)cos(pz) " 1 [ sin(z)
[_]U +]—)fo — cos(px) dx

p
Taking the limits

hm_sn(x) cos(pz) _ si(0) _ T
20 p p 2

lim — si(z) cos(px) _

Hence we get

1 [ si
LI [ sin(x) cos(px) dx
2p pJo T

The integral

% gin(z) 1 reesin((p+1)x)-sin((p-1)x)
b h dm

cos(pz)dx = =
2 T
Separate the integrals

1 resin((p+1)x) 1 reesin((p-1)x)
1= 3 ./0 ——dx - 3 /(: — dx

X

Ifp-1>0weget

(

iyes

2

)



Ifp-1<0

Izlf sm((p+1)x)dz+1f sm((l—p)x)dx:z
2 Jo x 2 Jo x 2

If p = 1 we have

I:lf S(20) 4y T
2 Jo T 4

Finally we get

—2% p>1

si(z)sin(px)dx ={ _ -
| si@ysinpayde =z o1
0 p<l1

14.7 Example

Prove that for0 < a < 2

[ si?(z) cos(ax) dx = R log(a+1)
0 2a

proof
Using integration by parts we get

.2 . o0 0o .
[51 (x) sm(az)] ~ 2[ si(z) sin(z) sin(az) dz
a o aJdo x
Taking the limits
.2 .
i S (x) sin(ax) 0
x—0 a
.2 .
i S (x) sin(ax) o
T—>00 a
Let the integral

I(a) = /Ooo w sin(az) dzx

Differentiate with respect to a

I'(a) = [Ooo si(z)sin(z) cos(az) dz
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Now use the product to sum trigonometric rules

I'(a) = % /;oo si(z)(sin((a + 1)z) —sin((a - 1)x)) dz

From the previous exercise we have
[ si@)sin((a+ Dayde = ——— >0
S1(Z ) sin( (a r)ar = ———— ; a
0 4(a+1) "’

fomsi(a:)sin((a+ Da)dr=0;a<2

Hence we conclude that for 0 < a < 2

™

M@=~

Integrate with respect to a

I(a) = —glog(cu—l) +C

Leta—0

I(0)=0+C - C=0

Hence we have

f‘” si(z) sin(z)

; sin(az) dx = —% log(a +1)

Which implies that

/(;oosiQ(x) cos(az) dx = _;2 (—glog(a+ 1)) = ;—alog(a-r 1)

14.8 Example

Find the integral, for a # 1

fow si(z) cos(ax) dx

solution

Use integration by parts to obtain
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lfom sin(x) sin(ax) da

a €T

Let the integral

I(t) = fowe_mwdx

Differentiate with respect to ¢

I'(t)=- '/Ooo e " sin(x) sin(ax) dz

Use product to sum rules

I'(t) = % fow e (cos((a+1)x) - cos((a—1)x)) dx

Now we can use the Laplace transform

, 1 t t
I(t)ZQ(t2+(a+1)2 _t2+(a—1)2)

Integrate with respect to ¢

I(t) :—ilog(w)+0

t?+(a-1)2

After verifying the constant goes to 0, we have

[} <31 3] 2 2
f ot sin(z) sin(ax) e 1 log(t +(a+1) )
0

x 4 2+ (a-1)2

Lett -0

00 o . 2
f sin(z) sin(ax) o = 1 log ( a+1 )
0 T 4 a-1

We conclude that

oo 1 a+1 2
i 5 dr=-—1
ﬁ si(z) cos(ax) dx ™ Og(a—l)
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15 Cosine Integral function

15.1 Definition

Define

ci(z) = - ﬁoo cos(t) dt

t

A related function is the following

Cin(x) = /Ow 1—+()s(t)dt

The derivative is

d . . cos(x)
%Cl(l‘)— .

The integral

/ ci(x) dx = zci(x) - sin(z) + C

15.2 Relation to Euler constant

Prove that

lim Cin(z) -logz = v

zZ—00

proof

Write the integral representation

lim

z—00 JQ

z1—cos(t
%()dt—logz

Can be written

z1- t z 1 it 1 t
lim [ 1zcos(t) )dt—[ = dt- f _cos®) 4y
z—o00 Jo t o 1+t o t(l+t) t

This is equivalent to

oo ts—l
—t5" L cos(t)dt

y
=0Jo (1+1)

The first integral
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oo ts—l
fo G TN

The second integral

fow t5 L cos(t)dt = T'(s) cos(ms/2)

Hence, it reduces to evaluating the limit
lir% L(s)I'(1-s)-T(s)cos(mws/2)
Using I'(s + 1) = sI'(s)

lim I(1-s)-cos(ms/2)

s—0 S

Use L'Hospital rule

lim ~T(1 - 5)(1 - s) + (m/2) sin(ms/2) = (1) =

15.3 Example

Prove the following

Cin(z) = —ci(z) +log(z) +~

Start by
Cin(x) = / cos(t)
Rewrite as
Cin(z) = fw Lo cos(t) g _ fw Locos®) 4
0 t T t
Which simplifies to

Cin(z) = lim [ fo ’ 1_%‘”(“ dt - log(z)] —ci(z) +log(x)

Z—>00

The limit goes to the Euler Maschorinit constant

Cin(x) =~ - ci(z) + log(x)
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15.4 Example

Find the integral

fooo ci(z) cos(pz) dx

solution

Using integration by parts we get

[Umr T )

p o P

Taking the limits

lim ci(z) sin(pz)
z—0 p

=0

lim ci(z) sin(px) o

Tr—>00 p

Hence we get

_1/ Msin(px)dx
p Jo x

The integral

* cos(z) . 1 peesin((p-1)z) +sin((p+1)x)
[0 ———= sin(pz) dx = 3 /0 - dx

Separate the integrals

1 resin((p+1)x) 1 e sin((p-1)x)
=3[R o [T g,

Ifp-1>0weget

Ifp-1<0

If p = 1 we have
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1 [ sin(2
I:ff Ll G s
0

Finally we get

~3, P> 1
fo ci(x) cos(pz) dx = - p=1
0 p<l
15.5 Example
Find forp > 1
f ci(px)ci(z) dx
0
solution
Let

I(p) = fow ci(px)ci(z) dx

Differentiate with respect to p

I'(p) = 2% /000 cos(px)ci(z) dx

If p > 1 from the previous example we conclude that

1 (-7 m
o= (5)-

p\2p
Integrate with respect to p

I(p)=—+C
2p

Take the limit p - o0, s0 C = 0.

15.6 Example

Prove that

fom z* tei(x) d = —@ cos (%)
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proof

Use the integral representation

—fooxa_lfoo cos(t) dtdz
0 x t

Lett=yx

0 1 Y

Switch the integrals

[} 1 (o)
—f f/ 27! cos(yx) dx dy
1 yJo

Using the Mellin transform we get

() [ e ()

15.7 Example

Prove that

™

fo ci(x)log(z) dx = 5

proof

From the previous example we know

/Ow 2 'ci(z) dx = _¥ cos (%)

Differentiate with respect to «

[T ey ton@) o = T2 o (07) O o (am) 7T, (o)

Take the limit o — 1

*° ™ ™ ™
i(2)log(z)dz=0-0+—sin(~) =2
fo ci(x)log(z) dx t5 sm(2) 5
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15.8 Example

Show that

oo 1
f ci(z)e *dx =-—logV1+a?
0 o

proof

Use the integral representation

_ f ooz f cos¥) 4 i
0 1 Y

Switch the integrals

o] 1 co
—f f/ e " cos(yx) dx dy
1 yJo

Use the Laplace transformation

oo o} 1 1
[ dy=-—log(1+a?) = ——logV1+a?
fl y(a? +y?) Y700 og(1+a’) a 8 “
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16 Integrals involving Cosine and Sine Integrals

16.1 Example

Find the integral
foo si(qz)ci(z) dx
0

solution

Using the integral representation

—fwsi(qx)fmwdydx
0 1 y

Switch the integrals

—/mlfomsi(qx) cos(yz) dx dy
1

Yy
We also showed that
” 1 a+1
. o L

/(; si(z) cos(ax) dx ” Og(a . 1)

Let a = y/q
f si(z) cos(yx/q) dI:—ilog(y_HJ)

’ 2y "\y-q

Let €T = tq

0 1
f si(qt) cos(yt) dx = ——log(y+q)
0 2y y-q

Substitue the value of the itnegral

1 re1
L e (22)
251 y* T\y-q

We can prove that the anti-derivative

[}

[log(y) B ilog(y2—q2) _ 21ylog(y+q)]

q 2q y-q
Which simplifies
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The limit y - oo

The limity - 1

Can be written as

16.2 Example

Prove that

[Ooo C;(imﬁ) dx = —% {Si(aﬁ)2 + ci(aﬁ)z}
proof
Let the following

[ ci(ax)
I(a)—fo e dz

Differentiate with respect to «

iy 1 [ cos(ax)
I(oz)—a’[0 e dx

Letx+38=t

I,(O[) _ l ‘/ﬁoo COS(O{(t—B)) dt

(o t

Use trignometric rules

I'(a) = 1 [ﬁ‘x’ cos(at) cos(af) + sin(at) sin(af) gt

o t

Separate the integrals

r, y_ cos(af) e cos(at) sin(af) [ sin(at)
I'(a) = 2 fﬁ St fﬁ 2t

This simplifies to
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I'(a) - —%fﬁ)a(aﬁ) - wsﬁ(aﬁ)

Integrate with respect to o

I(a) - -% [si(aB)? + ci(aB)?} + C

If @« » 0o we have C' = 0.
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17 Logarithm Integral function

17.1 Definition

Define =

lie) = .[ log(t)

The derivative is

1
log(z)

li(2)

|~

The integral
f li(2)dz = 21i(2) - Ei(2log 2)

By using integration by parts

f li(z) dz = 21i(2) - ; log(x)

In the integral let —2log(z) = ¢

f li(z) dz = 2li(z) + f —dt =z1i(2) - Ei(2log 2)

2log(z) t

17.2 Example

Prove that

fol li(x) dz = —log(2)

proof
Let the following

e~ 0 log(t) dt

Ka) = / f T log(t) d

Differentiate with respect to a

1 T
I’(a)=—/ f % dt de
0 0
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I'(a) —Lifllﬂd
a) = X X
a-1Jo

Which reduces to

1 1 1

F«w:(a—IXQ—a):Q—a_l—a

Integrate with respect to a

I(a) = log(l -

)+C
2—-a

Take the limit a — oo we get C' =0

e~alos(®) gy l1-a
e
log(t) 2-a
Leta—0

fol li(x) dz = log (%) = -log(2)

17.3 Find the integral

1
f 2P i(x) da
0
solution

Let the following

—alog(t)dt
0= [l [
(a) = T ToaD) dx

Differentiate with respect to a

1 T
I'(a) = —/ zP! / t~*dtdx
0 0

! 1 1 Y4 d
I'(a) = ~[ -a
(@)=0=7 ), v de

Which reduces to

, _ 1 _1 1 ~ 1
Ia) = (a-1)(p-a+1) _p{p—a+1 1—a}

Integrate with respect to a
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1-a

I(a):%log( )+C

p-a+1

Take the limit a - oo we get C' =0

e—alog(t) 1 1-—
f pl[ dt x:—log( a )
log(t) P p-a+l

Leta—0

e~aloe(®) gt 1 1 1
p-1 == ==
[ f log(t) de plog(p+1) plog(p+1)
17.4 Find the integral

fol li (i) sin(alog(x)) dz

proof
Let the following

L1 b log(t)dt

1(b) = folsin(alog(x))fow Wdz

Differentiate with respect to b

I'(b) = —folsin(alog(x)) [)E t7° dt dx

1

1
I'(b) = — f 2 sin(alog(x)) dx
b-1Jo

Letlog(z) = -t

1

') =1 f e~ sin(at) dt
- 0

Using the Laplace transform

a

"= @

Integrate with respect to b

alog(a® +b?) —alog(b—-1)? +2 arctan(b/a)

I(b
(b) = 2a2 + 2

Letb —» oo
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=—— 4+
2(a2+1)

Hence we have

log(z)) f _blog(t)dt dr alog(a? +b?) — alog(b-1)% + 2arctan(b/a) T
./ sin(alog(x log(t v 2a% +2 2(a?+1)

Letb—0

L, . _alog(a®) ™ 1 z
fo sin(alog(z))li(x) dx = 2a2+2 3(a2+1)  wil (alog(a) - 2)

17.5 Example

Find the integral

s
f fi) log?™! (l) dx
0oz x

proof
Let the following

1 z o—alog(t) "
Ha) = ./ : [./0 log(t) d]logp (é) e

Differentiate with respect to a

'(a) :—folé[fozt—“dt] log™! (i) da

I'(a) = z %og?™! (l) dx
- T
Let —log(z) =
I'(a) = T (a1 gy
a-1Jo
I,(CL) - _ F(p) — F(p)

(I1-a)(1-a)?  (1-a)r+!

Integrate with respect to a

~_I'(p)
p(1-a)P
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Let a — 0, Hence

17.6 Example

Prove that
% (1 _1 7T
f h(f)logp (z)dx=-— T'(p)
1 x sin(mp)
proof
Let the following

I(a) - fl "l () log? Y () d

Differentiate with respect to a

d. . d o od ae
—li(z™) = — f =
da da Jo log(t) a

Hence we have

1 oo
I'(a) = - f 2% log? ! (x) dx
a1

Letlog(z) =t

1 o]
I'(a) = - [ e~(a D=1 gy
a Jo

Using the Laplace transform

@) =T 0) 5

Take the integral
/OOI’(a)da - T )[m o
1 W a(a-1)p
The left hand-side

I(oo)—](l)ZF(p)/loo B

a(a—-1)P
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Now since I(o0) =0

e 1
I(1) =-T R
W)=-r) [ s
Which implies that

Lo e ) [

Now lett=a -1

[
o t+1
Using the beta integral # +y = 1 and x — 1 = —p which implies that z =1 -p,y = p

Hence we have

S Cdt=5(p1-p) = T(G)T(1 - ) =

t+1 sn(rp)

Finally we get

flm H(i) log? ! (z) dx = ———T'(p)

sin(mp)
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18 Clausen functions

18.1 Definition

Define

sin(k0 .
pa q”;c(m ) mis even

cly,(0) =
pOya] Coz(n]fe) m is odd

18.2 Duplication formula
A (20) = 271l (6) = (=1) ™l (7 - 6))

proof

If m is even then

. >, sin(km — k6 had sin(k6
clipg(r=0) =Y % =- Z(-M#
k=1 k=1

This implies

cla(8) + iy, (7 - 0) = Z(_l)k sin(k6) - sin(kg) 1 3 sin(2k0)
= km ] km 2m 1 frc] km

This implies that

L (20) = 2™ (L (8) = cln (7 - 0))

If m is odd then
iy, (7 0) = Z cos(knr ko) Z( 1)k cos(k0)
= ] km
cos(k:&) d cos(k0) 1 s1n(2k0)
S el | gy 1S
k=1 k=1 k=1
Which implies that

cln (20) = 2™ (el (0) + cly (7 - 6))

Collecting the results we have

cln(20) = 2™ (el (0) = (1) cly (7 - 6))
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18.3 Example

Find the integral, for m is even

fo " el (0)d6

solution

Using the series representation

f sm(k9)
0

Swap the integral and the series

>, kim fowsin(ké)dﬁ
The integral
T 1 T (-1)F+1
f sin(k0)dl = - |:f cos(k:@)] ="
0 k 0 k
We get the summation
= —(-1)F+1

‘;{ng(mu)m(mu)

Now use that

1(s) = (1-2"7)¢(s)

[

m+1 —C(m+1)+(1 27 ((m+1)=((m+1)(2-2"™)
k=1 k

18.4 Example

Find the integral for m is even

f () do
0

Using the series representation

f°° i sm(k0) nb gy
k=1
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Swap the integral and the series

Zim f sin(k0)e ™ df

Using the Laplace transform we have

. 1
2 iR )

Add and subtract k? and divide by n?

1 i k2 +n?2-k2
) km=1(k2 + n2)

Distribute the numerator

1 1 & 1
PR UD Rl D e T

Continue this approach to conclude that

i 1 1)7 & 1
(1) g lm == 1)+ S S s

=1

Let m —2j — 1 = 1 which implies that j =m/2 -1

(_1)m/271 i 1
nm-2 = k,(k.Q + TL2)

m/2-1 1
> () - (21 1) +

=1

Now let us look at the sum

o 1 © 1 1 1
;k(k2+n2) ‘gzmk{k—m_mm}

Which can be written as

= 1 1 &1 in —in

According to the digamma function

o 1
,;W m2 {7+¢(1+m)+¢(1_m)+ﬂ

which simplifies to

kad 1 (1 —in) + (1 +in) +2y
,;1 k(k2+n2) 2n2
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Now we we can verify (1 —in) = (1 + in)

Which suggests that
(1 +in) + (1 —in) = 2R {¢p(1 +in)}

Hence we have the sum
B 29{{1/1(1 +m)} + 2y B 9‘{{1/)(1 +zn)} +7)
- 2

had 1
,; k(k2+n2) 2n? n
This concludes to
= @UD) | R}y
n7"

Z (-1) n2l
=1
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19 Clausen Integral function

19.1 Definiton

We define

hy(z) =Y sin(kx)

2
k=1 k

19.2 Integral representation

cb(Q)z—fflog[Qsin(%)]dqb

proof
Start by the following

oo _ik0 oo 00 i
. e e cos(kf) . & sin(k0)
Liz(e”) = ) 12 :kz_:l 2 +zkz_:1 2

k=1

By the integral definition of the dilogarithm

Liz(e”)—gm):—fld de

Let z = ¢

Lis(e) - ¢(2) = —i fog log(1 - ¢)d¢

Let us look at the following

1-€' =1-cos(¢) —isin(¢) = 2sin®(¢/2) - 2isin(¢/2) cos(¢/2)

Which simplifies to

1- €' =2sin(¢/2) [sin(¢/2) —icos(¢/2)] = 2sin(qb/2)e_(i/2)(”_¢)

Hence our integral

Liz(e') - ¢(2) = i foe log [2sin(¢/2)e” D] g

Use the complex logarithm properties

Lig(e) - ¢(2) = i foe log [2sin(¢/2)] d¢ + i(ﬂ -0)? - %rz
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By equating the imaginary parts we have our result.

We can see the special value

oy (Z) _ i sin(km/2) _ i (-1)* G

2) =k i=o (2k + 1)

Where G is the Catalan’s constant.

19.3 Duplication formula

Prove the following

cl2(260) = 2(cly(0) - clo (7 - 6))

proof

We provide a proof using the integral representation

cly(20) = —/026 log [ZSin(%)] dt

Lett=2¢

-2 [00 log [2sin (¢)] do

Use the double angle identity

o o3 ()]

Separate the logarithms

RSS

—2foolog[2sin(§)]d¢—2[0910g[2cos( )]qu

We can verify that

clo(m-0) = [Oglog [2cos(§)]d¢

Hence

cla(20) = 2(cla(0) — cla(7 - 0))

Using that we get the value
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3 s
cla(37) = 2cly (7) - 2cly (—5)

o(5)-5) (3] o

Since cla(37) =0

19.4 Example

Prove that

2m 9 7T5
/(; clo(z)*de = %

Using the series representation

adgiad 27
1;1”2::1 (nk)?2 /0 sin(kx) sin(nz)dx

Consider the integral

2 . . 1 2m
[0 sin(kx) sin(nz) dx = 3 fo cos((k —n)x) —cos((k +n)z)dr

We have two cases

If n = k then
1 27
= f 1-cos(2nx)dx =7
2 Jo
Ifn+k
2 . _ . 27
% _/0 cos((k— m)) — cos((k + n)a) di = % [sm((kkz_ nn)iv) ~ sm((kk:nn)x) O 0
Hence we have
2 0 n=+k
f sin(kx) sin(nz) dr =
0
T n=k
We can write the series as
22 e L 2

Now since the integral n # k goes to zero the result reduces to
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1 5
=W = oo

3

19.5 Example

Prove that

/2 7 w2
1 i dr = —((3) - —log2
/0 xlog(sinzx) dx 16(( ) g o8

proof

sl jus 2
I= / ’ xlog(sinz) dx = f ’ xlog(2sinz) - 7Tglog(2)
0 0

The integral reduces to

gD T
B 4n:1 ’I’L3 471:177’3
7
- (3

L)

Collecting that together we have

2
1= Le(3)- T log(2)

19.6 Example

Prove that

/4 T
f xcot(x)dx:—glog(2)+G/2
0

proof
Start by integration by parts

/4 T /4
f xcot(x) dx = 3 log(2) - f log(sinx) dx
0 0

In the integral
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/4
[ log(sinx) dx
0

Letz — t/2

1 /2
= f log(sint/2) dt
2 Jo

Which can be written as

1 /2 ) 1 /2
7/\ log(2s1nt/2)dt—ff log(2) dt
2 Jo 2 Jo

Using the Clausen integral function we get

—%Cb(w/z) - %bg(g)

Note that cla(7/2) = G
We deduce that

w/4 . T
/0 log(sinz) dz = -G/2 - 1 log(2)

Collecting the results we have
74 ™ ™ T
f xcot(x)dr = 3 log(2) + G/2 - 1 log(2) = 3 log(2) + G/2
0

19.7 Second Integral representation

Prove that
) 1 log(z)
12(6) = -sin(0) |
cla(8) = ~sin(6) 0 x2-2cos()x+1
proof
Note that
22 =2cos(@)z+1=2> - (e +e Nz +1=(z-e)(x-e)
This implies

1 o {1 1 }
22 -2cos()z+1 el —ei0 g —eif g —eif

141



Note that e?? — e = 2isin(4)

1 o { 1 }
—2cos(f)z+1  2isin(h) \z—e® z—e

Now use the geometric series

1 _ 1 ke o—i(k+1)0 N~k i(k+1)0
-2cos(@)z+1  2isin(0) {k;)x ¢ k;]x ¢

1 o0
-2cos(f)x+1 Sln(ﬂ) Z

~sin(k0)

That implies

. 1 log(x) = . fl k-1
—S == S 1 = 1
sin(0) fo 2 cos(0)x + 1 dz kE=1 sin(k6) A " Hog(z) dx = cla(0)

19.8 Example

Find the value of

proof

Use the second integral representation

c12(27r/3)——\/_[ _log(z)

22+x+1
Use that
2 -1=(z-1)(z*+z+1)
Hence
g1
012(2w/3):-ﬁf L7 Jog(x)dz
2 Jo a3-1
Letz3 =t
1 1 tl/S_l(tl/S _ 1)
1o (27/3) = - f log(t)d
clo(2nf3) = = [ a0y
Note that
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1 .’L‘S_l
P'(s) = [) log(x) dx

l1-z

We deduce that

el (21/3) = —% (W' (2/3) - v'(1/3))
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20 Barnes G function

20.1 Definition

Gl +1) = )y Pexp (- 2 ] {(1 ) ez )}

n=1
20.1.1 Functional equation

Prove that

G(z+1) =T(2)G(z2)

proof

From the series representation we have

k

Gl+1) = Varep(-z-72+ 1)

( k+z ) o (22—1—2k)
X —_— 1.
G(2) kio-1) TP\ o

Gl

This can be written as

k

)

Ex N

M:Z\/ﬁexp(—2+l)ﬁ( k+z )

1+2k z\ e 7?2 2\7!
) 1+ 2 1+2 (
G(2) o) Mk exp( ok )( +k) E ,1—[1( +k) ‘

Use the definition of the gamma function

Ot arvares -+ 1) 1 (52 ) e (<Lo25) (1)

It suffices to prove that

7\ = k+z ) ( 1+2k)( z)
V2 4~ )1+ 2) =1
‘ 7TeXp( Z+2)g(k+z—1 PUT2r U 7%
or
°°( k+z )k (_1+2k)(1 z)_exp(z—g)
i \k+z-1 2k k N2
Start by
N( k+z )’f ( 1+2k)( z)
lim xp [ - -
Nooop i \k+2z-1 2k k
Notice
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f_vl( o )(1k) it (k +2) TS (1+ )

k+z-1 k Y, (k+2-1)k

I (ke 2) M TR (R + 2)
ZNITINE (k + 2)k+

(N )M (ke 2) TG (b 2)
ZNI TN (K + 2) R+

B (N+z)N+1 Hg:?(k + z)k+1
ZNI TS (k + 2) R+

~ (N+Z)N+1
N zN!

The second product

Hence we have the following
e~ 3HN-N (N +z)N*!

ZN
According to Stirling formula we have
N+1
o~ HN-N (N +2)M o 3HN-N (N+2)"" « 1
ZN! 2(Nje)N  /2xN

By some simplifications we have

1+—
N

eé<HN1°gN>( Z)x(1+Z)N>< 1 exp(-3+2)

z

Where we used that

lim H, -log(n) =+

and

N
lim (1+ i) = ¢
N

n—oo

20.2 Reflection formula

log{G(l ; z)} _ zlog(Sin:rZ) ) . cla(272)

2

145



proof

Start by the series expansion

G(1-2) (27) /2 exp (%) e, {(1 - %)nexp (% + z)}
GO+2) @m e (=) I (1 5) ew (57 -2))

n=

This simplifies to

G-2) _

Zo? (n—z)
G(1+2z) 2m)” H

(n+z)"

Take the log of both sides

log{gﬁlz;} =-zlog(2m) + 2z +log{n EZ;;;H }

Let the following

f(z):log{n (n-2)" } inlogn z) -nlog(n+z) + 2z

n:l( +Z)n n=1

Differentiate with respect to =

-n —n(n+2)-n(n-2)+2(n?-2?)

HOEDY 223

Zn-z n+z n2 - 22

z

Hence we have

00 _222
n=1 n?—z2
Now we can use the following
) _222
zmeotmz =14 ) ———
n=1 "~ %

Hence we conclude that

f'(z) = zrcotmz -1

Integrate with respect to z

f(z)= fozxﬂcot(mc) dx — 2z

Hence we have
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1og{G(1 -z)

G(1+ z)} = —zlog(2m) + fo zm cot(mz) dx

Now use integration by parts for the integral

f xmeot(mx) dx = zlog(sinmz) — f log(sinmx)dx
0 0

That implies

= zlog(2sin7z) - [ log(2sinmz)dx
0

. 1 21z o
:zlog(QSlnﬂz)—?f log (251n§)dx
m Jo

cla(272)
T

=zlog(2sin7z) +

(272)

G(1- mz) - zlo 7T+1 8 .7r
| { ( Z)}:zlog(QSin 2) - zlog(2m) Mzzk (Sl(z)) cly

G(1+2)

21

20.3 Values at positive integers

Prove that

proof

n-1

G(n) = []T (k)
k=1

It can be proved by induction. For G(1) = 1, suppose

We want to show

By the functional equation

G(n) - jr[iF(k:)
G(n+1) = [[T(k)
k=1

G(n+1) = T(n)G(n) = T(n) :1‘[1 (k) - ]f[ll“(k)
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20.4 Relation to Hyperfactorial function

We define the hyperfactorial function as

H(n) = ﬁ K"
k=1

Prove for n is a positive integer

G(n+1) = (n)"

H(n)
proof
We can prove it by induction for n = 0 we have, G(1) = 1,
suppose that
~ F(n)n—l
)= Ho-1
we want to show that
I'(n)™t
1)="T =T _
Gln+1) = D)) = D) gy
Notice that
n-1 n 1.k
" k" H(n)
Hn-1)=[[k=2+—="2+
(n-1)=[[K ===
We deduce that

G(n+1) =T(m)G(n) - X xn"_ ()"

H(n)  H(n)
20.5 Loggamma integral
Prove that
fozlogF(x)dx = glog(27r) + z(z2— D) +2logl(2) -logG(z + 1)
proof

Take the log to the series representation

2

2 1 oo
logG(z+1) = glog(27r)— w + Z nlog(1+ %) + ;—n -z
n=1
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Let the following

f(Z):inlog(l+Z)+22_Z

n=1 2n

Differentiate with respect to z

oo oo 2
, n z z
= 2 1=y
7() ,;z+n+n nZ::ln(n+z)
Now use the following
1 & z
() __V_E-FT; n(n+z)

which implies that

oo 2

227=z¢(z)+72+1

Zn(n2)

Hence we have

J'(2) = 2(z) + 72+ 1

Integrate with respect to z

f(z) = /(;Zx@/)(:c)der 7722 +2z

which implies that

f(z) =zlogI'(2) - [OZ logT'(z)dx + 7722 +z

Hence we have

2

2 1 z
w+zlogf(2)—/ 10gF(w)dw+%+z
0

logG(z+1) = glog(%r) - 5

By some rearrangements we have

/Z logT'(z)dx = glog(%r) + @ +zlogT(z) -logG(z+1)
0
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20.6 Glaisher-Kinkelin constant

We define the Glaisher-Kinkelin constant as

A= 7}21010 22 ]241]12 ;—n?[4

20.7 Relation to Glaisher-Kinkelin constant

Prove that

. G(n+1) et/12
lim S = =
n—eo (27)1/2nn?[2-1/12¢-3n2/4 A

proof

Use the relation to the hyperfactorial function

I (nh)™
nl—I}:;lo H(n)(gﬁ)n/2nn2/2—1/126—3n2/4

Now use the Stirling approximation

(n')n o (271_)n/2nn2+n/2€—n2+1/12
Hence we deduce that

. (27T)n/2nn2+n/267n2+1/12 1

Jm, H(n) *(2m) 2 2112 =307/

By simplifications we have

2 2
12+ [2+1/12 ;-0 [4 ,1/12

1/12 1 —
T ahe H(n) A

20.8 Example

Prove that

¢'(2) = %2 (log(27) +~ —12log A)

We already proved that

G(n+1) 1

log (2m)n/2pn?2-1/12¢-3n%/4 | © 12

—log A
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Let the following
G(n+1) ]

(27r)n/2nn2/2—1/12673n2/4

o

Use the series representation of the Barnes functions
n ’I’L2 [es) n 2
(2m)™? exp (—w) ITrey {(1 + E) exp ( - n)}
(2m)/2n?[2-1/12¢=3n7/4

f(n) =log
Which reduces to
n+n?(l+vy) & n? n? 1 n?
= Elog(1+— )+ —=-n; - |—-—]! —
fm) y Tk Og( +k)+2k: 7 " 1z)loem)
Differentiate with respect to n
f'(n) ——%—n—’yn+m/)(n)+7n+1—n10g(n)—%+%+3§
Note that we already showed that
) 2
di > {klog(lJrZ)Jr;Lk—n} =nyY(n)+yn+1
By simplifications we have

1

1 _ —nl - 4z

/() = () ~ nlog(n) + = + -

Now use that
(n) =log(n) - / (n2 + 22 6271'2 _ 1)dZ
Hence we deduce that
nzdz 1
-2 f dz+ —
/() = (n? +22)(e?7* - 1) T 1on
Integrate with respect to n
* zlog(n* +z
f(n) :—[ (eg2(m_ D )dz+—log(n)
Take the limit n - 0
zlog(2?) zlog(27) .

_ 1
= 1'1_13% f(n) - 12 log(n) + fo (e27% — 1)
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Hence we have the limit

G(n+1)
(27r)n/2nn2/26—3n2/4

lim G(n+1)

n—0 (27T)”/2n”2/2 1/1267‘3”2/4 =0

B log(n) = }LI_I)T(lJ log
Hence we see that

o2 [

Finally we have

f(”):_fooo zlog(n® + z )dz+%10g(n)+2f (zlog(_z)

(627rz _ 1) 6271'2

f(n)=—ﬁmwdz—log(n2)f 62“— ) log n)+2f _zlog(z)

(627rz _ 1) e27rz _

Also we have

A
0 (e2m—1) 24

That simplifies to

f(n):_/ow Zlog 1+ 2/ zlog(2)

(627rz _ (6271',2 _ 1)

Take the limit n — oo

zlog 1
Qf — —log A
(e@=-1""12°*®

Now use that

5 f°° zlog(z) 9 /‘ zlog(z) 1 &
0 (627rz _ 1) e2nz — e 2Tz
=2 Z f 6_2”("+1)zlog(z) dz
n=0-0
_§ 1(2) ~log(21) ¢ log(n)

2m2n2

((2) - log2m)E(2) + C'(2)

27?2

Hence we conclude that

'(2) = (log(2m) - $(2))G(2) + 27* (5 ~log A) = () (lg(2m) + 7 - 12log 4)
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20.9 Example

Prove that
, 1
¢'(-1) = - -log A

proof
Start by

m 1-s -5 —s—1

¢(s) :77111_1};(2 k% - T—s - m2 + sm12 ) , Re(s) > -3.

k=1

Differentiate with respect to s
m ml—s ml—s m=$ m=S 1 —-s—-1
4 . —S
C (S) = "lll_{I(lx? (— kzz:l k lOg(k/') — W + 17—5 log(m) + log(m) + 12 — 12

Now let s - -1

m 2 2 1 1
¢'(-1) = 77lLl_r)riQ (—kZ:l klog(k) - mj + m? log(m) + % log(m) + TRET log(m)

Take the exponential of both sides

mm2/2+m/2—1/126—m2/4 mm2/2+m/2—1/12e—m2/4 el/12

oS D) Z p1/12 §5 =e'1? lim =

m—»o0o eZL’;l klog(k) m—o0o H(m) A

We conclude that

1
(1) = — —log A
¢'(-1) 15 ~log

20.10 Relation to Howrtiz zeta function

Prove that

logG(z+1) - zlogT'(2) =¢'(-1) - ¢'(-1,2)

proof
Start by the following

s . Z1=s *© sin(sarctan(z/z))

+2
2 s-1 0 (22 +a?)s2(e2mr -1)

z

C(s,2) = dx

Take the derivative with respect to s and s — -1
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(~1,2) = _ zlog(z) . 2% log(z) B ‘i . /oo zlog(z2 + 22) + 2z arctan(z/2) .
2 2 4 0 (627rz _ 1)

Now use that

-1 [
Which implies that
2zx 1
1) (1) dz = zlog(z) - 5 2(2)
By taking the integral

> rlog(z? + 2?) - xlog(xQ) z z 5
‘/O (627r:r _ 1) A J,‘lOg(],‘) dx - A Wﬁ(l‘) dr - 5

Which simplifies to

— 2., .2 2 #
fo ”3(06%_*12))43;:4’(—1)—1+2z210g(z)—210gf(2)+f0 10gf(af)d“f—§

Also we have

) - .
QL ($2+Z2)(62WI_1)d$:10g(2)_£—w(2)

By integration we have
 arct 1
2[) W(ﬁx:z+Og2(z)—zlog(z)+log1“(z)+0
Let z — 1 to evaluate the constant
oo 1 1
2 / arctan(x/z)d = M - zlog(z) +logT'(2) — = log(2m)
6271'9: _ 2 2
Multiply by =
1
2 f zar(;tan(x/z) dr = 2%+ %g(z) - 2%log(2) + zlogT'(2) - glog(%r)
e T _

Substitute both integrals in our formula

o2 ¢y

f logT'(x)dx = %10g(27r) +
0

We also showed that
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z(1-2)

[ logT(z)dx = glog(%r) + +2logl(2) -logG(z + 1)
0

By equating the equations we get our result.

20.11 Example

Prove that
G (1) _ 9l/24_~1/4,1/8 4-3/2

2
proof
We know that

log G(z) +log'(2) — zlog'(z) = ¢'(-1) - ¢’ (-1, 2)
Note that
1 S

¢(s3) = -1eE

Which implies that

¢(-13) =821 - 2

Hence we have

1y 1 1y 3 log(2)
1 )+ SlogD (=) =S¢/ (-1) - === ¢(-1
0gG(5) + 5loeT(5) = 3¢/ -1 - B¢
Using that we have
(1) 1/24_~1/4 3¢'(-1)
G 5 =2 ™ ez
Note that

(1=

This can be proved by the functional equation of the zeta function.
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21 Complex Analysis

21.1 Introduction to complex numbers

The idea of complex numbers originated from trying to solve polynomials like those in the form 2% +1 = 0.
If we do a simple algebra then it is easy to induce that 2% = -1 but we know that there is no real number
whose square is a negative number. Which implies that this polynomial has no solutions in the set of
real numbers. Hence, we need to expand the set of real numbers R to the set of complex numbers C. By
definition a complex number can be written in the form z = x + iy where z,y € R. We say the real part of
R(z) = z and the imaginary part J(z) = y. We can think of i as a special symbol with the property i* = -1
ori = /~1. Now let us define some algebraic operations.

Let a = 21 + iy; and b = 23 + iy, be two complex numbers then we define the following operations

a+tbh= (l’l +$2)ii(y1 +y2)
axb=x113 - y1yo +i(21Y2 + T2y1)
For division we need that b # 0 which by definition means both z; and y» can’t be zero at the same

time. Also we need to define the complex conjugate which is @ = x; — iy; then we can easily see that

axa=x? +y}. Using that we define division for a and b # 0 as

ab
I
T3+ Y3

X
St S

21.2 Polar representation

We usually define complex numbers as the following

z=re"? = r(cos(¢) +isin(e))
Where we define r = |z| = \/m as the modulus and ¢ called the argument or arg(z). Geometrically
this can be seen as in Figure 1.
This representation allows a better representation of both multiplication and division. Let z; = r1e*!
and 2z = r9€'®2 be two complex numbers. Then this implies

21 X 23 = r1r261(¢1+¢2)

2 ﬁei(%—@)
z2 T2
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3{z}

zZ=x+1y

o) R{z}

Figure 1: Polar representation of a complex number

The absolute value of complex number or the length of the vector representation is an important property
of a complex number. Note that |z| = 1 implies that z is unit vector. One of the most important properties

is the triangle inequality which will be very handy for us in the coming sections

21 + 29| < |z1] + [ 22|

To prove it note that

zZ1 + 2’2‘2 = (Zl + 22)(2,’1 + 22) = |Z1|2 + 2129 + 29271 + |Z2|2
= |21|2 + 2129 + 2122 + |2’2|2

= |Zl|2 + 2R€(2’1272) + |22|2

Note also

Re(zlz_g) < |le_2| = |Zl||22|

Finally we have

|Z1 + Zg|2 < |Zl|2 + 2|2122| + ‘2’2|2 = (|2’1| + |ZQ|)2

An easy corollary is the reverse triangle inequality

|21 + 22| > [21] - |22

One can also deduce the following by induction on n

n
5
k=1

n
< Z |Zk|
k=1
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Note that geometrically in terms of vectors the triangle inequality implies that the length of two vectors
is greater than the length of their sum. This also holds in triangles in Euclidean geometry where the sum

of lengths of two sides is greater than the third the length.

21.3 Complex functions

Complex functions are mapping f : C — C. A function that is differentiable on a certain neighborhood of
the plain is called an analytic function. You can see a specialized complex analysis book to understand

these terms in details. Specifically the relation to Cauchy-Riemann equations.

21.3.1 Exponential function

The exponential function f = exp(z) is an entire function (analytic/differentiable in the whole plain). We

see that the function has no discontinuities. Also we have

e* = ee" = e”(cos(y) + isin(y))

Which implies that |e*| = . The function acts smoothly with the usual derivative (e*)’ = e* and the

expansion

[}

k
2 z
(&) ZZE

k=0

One also can note that the function is periodic with period 2kmi.

21.3.2 Sine and Cosine and hyperbolic functions

These functions are also entire in the complex plane. They almost have the same properties as the real
counterparts but one essential difference is boundedness. We know in the real case that |sin(z)| < 1 but
it is not the case for |sin(z)|. You can see that since sin(z) = 5- (¢* = e”*) . Now since [e7*| = e¥ we see
that e? is unbounded near infinity then sin(z) is also unbounded. You can deduce the same for cos(z).

Note that also d% sin(z) = cos(z) also we have d% cos(z) = —sin(z) . The expansions around zero are

: _ .- (_1)n 2k+1
sin(z) = ];) @k 1) 1)!2 k

cos(z) = 3 (_1)nz2k
(2) ,;J (2k)!

The hyperbolic functions can be defined in terms of the sine and cosine functions using the relations
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cosh(z) = cos(iz) , sinh(z) = —isin(iz)

You can then deduce the derivatives and the series expansions around zero. The exponential represen-

tation is also useful. Note that

21.3.3 Complex logarithm

Usually we think of logarithm as the inverse of the exponential function away from zero. As in real

analysis we have log(e”) = z but it is completely risky to think the same for complex analysis. The

problem with complex exponential is its periodicity. Note that we have e**2k7 = ¢2¢2k™ = ¢= hence the

function is not one to one. We have infinite values that map to the same value. This makes the complex

logarithm a multi-valued function with the definition
log(z) = log|z| + iarg(2)

Some authors might use In(z) interchangeably with log(z). Here we usually use log(z) to denote the
natural complex logarithm. Let us see some examples
Example. Find log(-2) , log(¢) and log(1 + )
solution
The easiest way is to use the polar representation. Note that we have ¢™ = —1 which implies 2¢!7 2™ =
-2. Simply we have

log(-2) =1log(2) +i(mw + 2km)

Similarly we have

log(i) = log(1) + i (g + ka) = (g + 2k7r)

Finally since 1 +4 = /2¢'T which implies
log(1 +1i) = log(V/2) +1 (Z + 2k7r)
Properties

1. log(z122) =log(z1) + log(z2)

2. log(z™) = nlog(z)
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3. elog(®) = 4

proof

1. Suppose that z; = r1€' , 29 = 2e'*2 and m =k +n
log(z122) + 2nmi = log(ryrae’(#1¥92))
=log(rira) +i (1 + ¢2 + 2mm)
=log(ry) +i(m + 2nm) +log(ra) + i(pa + 2k7)

=log(z1) + log(22)

2. Similarly we have for z = e’

log(2") = log(r™e™™?) = nlog(r) + i(n¢ + 2knx) = nlog(z)

3. Finally we have

6log(z) _ elog|r\+z(¢+2kﬂ') _ Tewﬁ =2

Some properties don’t necessarily hold for example log(e?) # z since e**2+™

= ¢” and that implies z =
z + 2kmi which is obviously can’t be true unless we choose k£ = 0. This suggests that we can make nice
properties by choosing proper values of the argument. This raises the concept of Branches of logarithm.
The definition log(z) = log || +i(¢ + 2km) makes the complex logarithm multi valued as explained earlier.

Each value for k raises a different branch of the logarithm that makes it single valued. One interesting

branch is called Principal logarithm. We define it as the following

Log(z) = log|z| + iArg(z)

where we define -7 < Arg(z) < m. Note that we usually use log(z) to denote the principal value when it
is clear from the context. Clearly this makes the function single valued.

Example. Find Log(-2) and Log(1 + 1)

solution

The main trick it to find the value of the argument that falls in the interval (-m,7]. Using that we

conclude

log(-2) =log(2) +im

Similarly we have
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log(1 +1) = log(\/2) + z%

The usual properties described in the previous section don’t usually carry on for the principal value. For

instance, Log(z122) # Log(z1) + Log(z2). Let 21 = 25 = —1 and note that

Log(-1x-1) =log(1) =0 # Log(-1) + Log(-1) = 2Log(-1) = 2xi

Now let us define the concept of a Branch cut. In order to make the complex logarithm an analytic
function we have to make it differentiable in a certain neighborhood. Note that the principal value of the
logarithm by choosing a certain branch the function became one-to-one but this is not enough because

the function Log(z) doesn’t behave well on the negative real axis.

3z}

PN N{z}

Figure 2: Behaviour of the Principal Logarithm near the branch cut

We see from the graph in Figure 2 that the function approach different value as we approach the negative

real axis. This causes a discontinuity that prevents the function from being analytic on that line.
Theorem 1 The function with |z| # 0

Log(z) =log|z| +i¢ , ¢ € (-m,7)
is analytic and the derivative is + .

Using that we can expand the function along values away from the branch cut. For instance for 2| < 1

we have

B

log(1-2)=-

M8
| N

b
Il
=
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We are not going to go into details of the proofs of such claims because they require a more firm under-

standing of analytic functions.

21.4 Taylor and Laurent expansions

In this section we establish the foundations of contour integration by studying the theory of Laurent
expansion, residues and poles. It is preferable if you have a basic knowledge in real analysis because

many theorems carry on from the real case to the complex plane. We start by the following theorem

Theorem 2 Let f be an analytic function in a domain D and zo be a point in D Then

k=0

is a valid representation in the largest circle with radius |z — zo| contained in D.

Example. Find the expansion of 1 around z = 2.

solution

Since the function is analytic in the whole plane except at the origin. Then we can use the Theorem to
deduce that

Y
f(k)(Q) _ ( 21]€)+1k!

You can verify that by taking multiple derivatives and substitute the value of z; = 2. Hence we deduce

that

k
I L

k=0

And the radius of convergence is |z — 2| < 2 which represents a ball centered at z; = 2 with radius less
than 2. As we see from the Figure 3.
Note that we cannot include zero because the function is not defined there. So the maximum circle is

that of radius 2.
Theorem 3 Let f be an analytic function in the punctured disk r < |z—zo| < R. Then f has a series representation

f(2) = i ak(z - 20)*

The theorem is actually saying that if a function is not analytic on a point 2y but analytic around it

then we can expand the function using what we call a Laurent expansion. The difference between
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Figure 3: Radius of convergence

Laurent expansion and Taylor is that Laurent allows negative indices of the series. We can think of it as a
generalization of the Taylor theorem which is a special case where coefficients with negative indices are
zero.

Example Expand the function f(z) = ﬁ in the domain 0 < |z| < 1.

solution

We need to rewrite the function as

o)

f(z)= Z ak(Z—Zo)k

k=—o00
We need to expand both functions in the domain 0 < |2| < 1. Note that the function f(z) = 1 isa

Laurent expansion around zero in the punctured disk |z| > 0 what is remaining is to expand the function

f(z) = 7% in the domain |z| < 1. Hence the intersection of both domains is actually 0 < |2| < 1. Note that

1 oo oo B oo
f(z)—szk:sz 1 Z 2"
% k=0 k=0 k=—1
which is exactly what we want.
Example Find the Laurent expansion of the function f(z) = S“;# around z = 0.
solution
Note that

: _ - (_l)k 2k+1
sin(z) = l;) 7(2]6 - 1)!2 k
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Which is a valid expansion in the domain z € C. Also Z% is a valid expansion in the domain |z| > 0. Hence

& (=DF
f(z)‘kz:o(zku)lzk

is a Laurent expansion in the domain |z| > 0.
Example. Find the Laurent expansion of the function f(z) = ;—_Zl around z = 1.
solution

First note that around z = 0 we have
Now let z — z — 1, then

Which implies that

U
IEICREY

is a valid expansion in the whole domain C. Finally we have

=1
7(2_1)k—1
,;01«!

in the punctured disk |z - 1| > 0.

21.5 Poles and residues

Here we discuss the of types of points where a complex function is not defined at. Usually they are called
singularities. Mainly we start by discussing the concept of Isolated Singularities.
An isolated singular point is a point where the function is analytic in the punctured disk by removing

that point.

1. Removable singularity A singular point is removable if lim,_,,, f(z2) exists. Equivalently, if all the

negative indexed terms in the Laurent expansion are zeros,namely a_;, = 0 for all £ > 0.
2. Poles a function f has a pole of order m > 0if a_,, # 0 and a_; = 0 for all k£ > m.
3. Essential singularity The Laurent expansion has an infinite number of non-positive indexed terms.

Example. Classify the following singularities

164



1. f(z):%atz:o

2. f(z):ﬁatz:1

3. f(z)=e*atz=0
solution

1. This is a removable singularity

2. By expanding around 1 we have

131 k-2
= - —(z-1
TORPPWICED
This implies 1 is a pole of order 2.
3. Note that
<1
1/z _
ellz = -

Then z = 0 is an essential singularity.

Theorem 4 The function f has a pole of order m at zy if and only if

oo 9()
f(2) G-y

where g(z) # 0.

The proof is done by writing the Laurent expansion of f and take (z — zp)™™ as a common factor.
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Residues are closely related to the Laurent expansion of a function. They will become really handy when
we start discussion about contours. We usually use the following notation Res(f,zo) as the residue of
the function f(z) at z = z.

Definition. Let f(z) be an analytic function in a domain D with the Laurent expansion

o)

f(z)= 3 a(z-z0)"

k=—o00

around z = zg. Then we define

Res(f, 20) =a-1

Where a_; is the cofficient of (z — z) ™!

Example. Find the residues of the following functions around z = 0

1. f(Z) _ sinz(z)

2 f(2)=%
3. f(z)=¢ell?
solution

1. Note that since f has a removable singularity and since a_; = 0 for all £ > 0 then we have Res(f,0) = 0.

2. It is simple to see that
-

&) =0 2, Grayt®
at k = -1 we conclude
1
ReS(f,O) =~
e

3. Using the Taylor expansion of e* and letting z — 1/z and rewrite the expansion as

’

1 k
—k)”

0
el/z _ Z

k=—oc0

Hence we have

Res(f,0)=1

Usually we don’t have to find the Laurent expansion in order to find the residues at a specific point. Let
us first note that the residues of an entire function is zero at any point. Now let us see theorems that help

us find the residues much more easier
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Theorem 5 Suppose z is a pole of order m of f(z) then

. 1 am m
Res(f,z0) = Jim e 1( z=20)" f(2)
proof
Write the Laurent expansion of f
A_m a—q
/) (z—=2z9)™ (z-20)

Multiply by (z — z9)™

(Z— Zo)mf(z) =y + o+ a_l(Z —Zo)m_l "

Take the derivative of both sides

dm—l

W(z - 20)" f(2) = (m-1)la_1 + O((z - 20))

We finish by Letting z — 2

1 dm-t
(m - 1)' o dzm-1

(2-20)"f(2) =a

Theorem 6 Suppose we have the following function

(Z)
h(z
where z is a simple zero of g(z) and f(zy) # 0 then
Res(h, zg) = f(z)
9'(20)

proof

Since z is a simple pole of h then

Res(h, z) = hm (z—z )f( z) - lim f(z)  f(z0)

( ) zozo 9(2)=9(20) - g’(zo)

zZ—=Zz0
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21.6 Integration around paths

Since in the complex plane C every complex number z € C has two components real and complex. We
can not use the same process as in real analysis to evaluate integrals. Now, integration happens around
paths. We will be concerned about a family paths. Mainly those curves that have continuous derivatives.
These are called smoothed curves. Mainly these curves don’t have a peak where the derivative doesn’t
exist, hence named smooth. We can attach a finite number of smooth curves to obtain piece-wise smooth

curves. Also those curves must be simple, that means it doesn’t cross itself.

Y Y.
b
Ch Cy G Oj\/(
a b x a x
(a) Piece-wise smooth curve (b) Smooth curve

Figure 4: Examples of smooth curves

Note that the orientation of a curve is essential to the evaluation of a path integral. Usually we work

with anti-clockwise orientations.

Theorem 7 Let f be continuous on a smooth curve -y given by v(t) = x(t) + iy(t) , where t € [a,b] then

[1@i= [ awn o

Example
Integrate the function f(z) = 22 around a circle of radius 1 traced counter-clockwise.
solution

2

Denote the curve (t) = ' where ¢ € [0, 27). Now since z? is continuous on the simple smooth path we

have

2 it it
/zdz:if e“tetdt =
v 0

This seems to imply that if we integrate around a simple closed curve the integration will be always zero.

(2~ ¢%) =0

W =

This is not always the case, consider integrating ' around the same curve
y

2 o 27
f 2 ldz =i / e teltdt =4 dt = 2mi
o 0 0
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One might notice that the function f(z) = 27! has a simple pole inside the closed path while f(z) = 22
is analytic in and on the contour. This is indeed the case as the Cauchy’s theorem illustrates. We first
define simply connected domains. A domain is simply connected if every closed contour/path can be
shrunk into one point. That implies the domain can’t contain holes. Let us know take a look at the

Cauchy-Grousat Theorem.

Theorem 8 Let f is an analytic in a simpley connected domain D. Then for every simple closed contour C'in D

we have

5[2 f(2)dz=0

Example. Choose a closed simple contour «(¢) in the complex plain then find the integration of f(z) =
(2% + 3z +1)" where n > 1 around that contour.

solution

We don’t have to worry about parametrizing the integral since the function is entire. We apply the

theorem directly to conclude that

ﬁf(z):/cj(22+3z+1)":0

One might think that regardless of the path of integration we can deduce that Independence of paths

which is explained in the theorem.

Theorem 9 For any analytic function f in a connected domain D for any simple paths ~, , 2 inside D we have

/;1 f(2)dz = -[72 f(2)dz

Where 71,72 have the same initial and final points.

Example Evaluate the function f(z) = z around the following path

mo

By independence of paths we can use a simple contour (line) that connect the same points a and b. Define

~v(t) =bt+ (1 —t)a where t € [0, 1].
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1 2_ .2 32 2
[zdz:(b—a)f bt+(1—t)adt:b2—a2—b @ _b-a
gl 0 2 2

One can also use the anti-derivative

This is indeed true by the fundamental theorem.

Theorem 10 For any analytic function f in a connected domain D for any simple paths (t),t € [a,b] inside D

we have

L F(2)dz = F(3(b)) - F(v(a))

So if the function is analytic and by the independence of path theorem we can find the anti-derivative
and use the initial and final points.
Now we look at the approach to evaluate functions that have poles inside the contour. First let us look

at the most important theorem , Cauchy’s Integral formula.

Theorem 11 Let f be an analytic function in a simply connected domain D then for any contour v € D we have

j<1§ 1(2) dz =27 f(20)

proof

First we can deform the contour + into a circular contour C. Then we have the following

Z =20 CZ Z =20

Note the second function is analytic since it has a removable singularity at z = zp hence

ORI P

C Z =20

Hence we conclude

/ ) 4 fie) L. Z‘io = 2mi f(20)

Z—=20

Using that we can conclude the Cauchy’s Integral formula for Derivatives

_flx) _ 2mi

(Z _ ZO)nJrl

f(")( 20)
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This theorem implies that the evaluation of a closed contour depends on the residue evaluation. Since

every analytic function f can be written as

o £(R)(
IO yE A GO
k=0 k.

Then we have

G-z (WD(z-z) & K

So the only term that contributes to the integral is the coefficient of (z — z9) ' which is by definition the

1@ () + i 7f(k)(zo)(z—zo)lC

residue. Hence we conclude that if f has a singularity z = zg we have

9{ f(2)dz = 2wiRes(f, 20)
.

We generalize the theorem by the following theorem Cauchy Residue Theorem or the residue theorem.

Theorem 12 Let f be an analytic function on a connected domain D except for some isolated points z1, -+, zy, then

for any simple closed contour v c D that contains the singularities we have

L F(2)dz = ZﬂiéRes(f(z), )

proof

Deform the contour v into a set of circular contours 71, -+, v, around each singularity

ﬁf(z)dz: [n f(z)dz+f72 f(z)dz+---+fnf(z)dz

Note forany 1 <k <n

f f(2)dz = 2miRes(f, zx)
Tk

Hence we deduce the result as sum of the residues. This is very powerful since it explains that the
evaluation of a function with some singularity around a contour containing them is no more than the
sum of residues. This relationship will be essential when we try to evaluate real integrals.

Example. Let P(z) be a polynomial with the leading coefficient as 1. Then find the following

dz
e

where v contains the zeros of P.
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solution
Factor P(z) = (z — 20)(z — z1). Consider two cases

Case 1. the polynomial has a repeated root zy then

dz f dz . 1
= =2miRes| ————,20] =0
2 P(2) (2= 20)? ((z—zm )

Since the Laurent expansion doesn’t contain a coefficient of (z - z9) .

Case 2. the polynomial has a two distinctive roots 2, z; then

dz dz
v P(2) _-[Y (2=20)(2 - 21) _k-

Res(1/P(z), zk)

1
=0

Note that

Res(1/P(z),20) = lim (2= ) _
z=20 (z—20)(z-21) 20-21

- 1
Res(1/P(2), ) = lim — =210
==z (z-20)(2-21) 21— 20

Hence we conclude that also

dz
ISeh

Can you generalize that ?

21.7 Bounds on integrals

Some integrals on contours are too difficult to evaluate so we better find a good bound or prove the

integral goes to 0 by proving

<e

ﬁf(z)dz

So the integral can be made arbitrary close hence it goes to 0. We start by an important bound called the

Estimation lemma.

Theorem 13 Let f be a complex-valued, continuous function on the contour c if f is bounded by M for all z on c

then

fcf(z)dstL

where L is the length of the curve c.
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proof
Note that by definition we have

’/Cf(z)dz

Now assume that |f(z)| < M that means the function is bounded on the curve

fclf(z)|"dZ|SM/c|dZ|

Now assume that the ¢ = y(t) is a parameterization of the curve then

[1azt= [

Now by the definition of the length L of a curve we have

< [1f)]-la

b
IR

Example. Prove that

lim 1 dz=0

Rooo JOr 22 +1
Where Cf is a semi-circle of radius R and centered at the origin.

proof

First note that for any point on the curve we have |z| = R hence

1 ‘ 1

J— S [

22+1|l” R?2-1

Where we used the Triangle inequality to show |z| -1 > R — 1 for large R. Also note that length of the

semi circle contour is 7 R. Hence we deduce

‘ 1 TR
f dz| <
Cr 22+1 R2-1

By taking R - oo we conclude our result.
The estimation lemma could be used to prove a more generalized form which we call the Jordan’s

lemma.

Theorem 14 Let f be a complex-valued, continuous function on the contour Cr which is a semi-circle on the

upper half plane centered at the origin. Let f be defined as the following
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f(z)=€%g(2)

For some a > 0 and assume that |f| < Mg on Cg then

T
< “Mp
a

‘/CR f(2)dz

proof

By using the bound on g we have

’f F()de| < M [ e |l
CR CR

Now note that on the curve for ¢ € (0, )

|ezaz| _ |ezaR(cos(t)+z sin(t)) < e—aRsm(t)

Hence we deduce by the parameterization Re**

’f £(2)dz sRMRf ematsin(®) gy
Cr 0

Since sin(t) is symmetric around /2 we have

/W e—aRsin(t)dt -9 fw/2 e_aRSin(t)dt
0 0

Now use the fact sin(t) > 2 to deduce

/2 . /2 T T
92 f —aRsm(t)dt <92 f —2atR/7rdt - (1- -aR <
o ° o ° R ( ‘ )

We finally get the result

™ ™
dz| < — xRMp=—-M
‘LR f(Z) : aR . R a R

Example. Prove that

2iz

lim dz=0

R—oo JORr 22+ 1

Where C, is a semi-circle of radius R and centered at the origin.

proof

By Jordan’s lemma
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™ 1
2R2-1

<

e2iz
3 dz
Cr 22 +1

It is left as an exercise to show the same result holds for

iaz P(Z)
Q=)

where P(z) and Q(z) are polynomials and D(P) < D(Q) + 1. Another remark is that we can generalize

f(z)=e

the result to contours in the lower half-plain but wit the condition a < 0.

21.8 Contours around poles

Now we look at the case where we have a singular point along the path of integration. To define that we
have to look at the concept Cauchy Principal Value. Let use first look at the definition in the real case.

Consider the case where f is continuous on the interval [a, b] except for ¢ in that interval then

PV [bf(gc)d:rzelir(r)l+ fc_e f(:v)dx+[b f(x)dx

Interestingly we can look at the point x = ¢ as a singular point of the function f(z).

Example. Find the principal value of the function f(z) = 1 on the interval z € (-1,1).

solution

First note that the integral in the usual definition of Riemann doesn’t exist because the function is not

continuous in the interval. Now let us look at the principal value

11 -1 11 11 11
Pvf Zdz = lim —dx+f Ldx == lim — —dx+f Zdr=0
-1 e X e X

>0t J-1 T e—>0* e
Hence the principal value exists while the integral is infinite on the interval. But if the Riemann integral
exists then the principal value integral exists and they are equal.
We can generalize the case to complex functions. Suppose that the function f around the along the
contour C' has a pole at the point z = z; then we can make a detour (semi-circle) around the pole and
take the radius goes to 0 as in the Figure 5.
Suppose that f(z) has a singularity at z = 0 and we need to find the integral along the contour C' that is

a line connecting @ and b then

PVfo(z)dz:lii%faief(x)derfce f(z)dx+f€bf(x)d:c

Let us now look at a simpler way to evaluate the contour around a simple pole instead of taking the

limit.
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Ce
AR

Figure 5: Avoiding singular points

Theorem 15 Let f(z) have a simple pole at z = zy. Suppose that C, is an arc starting at an angle 0; and ending

at an angle 0y around z, then

lim /()

tim [ L2z =i(0; -0 (z0)

This theorem is powerful and gives away a simple way to evaluate integrals around arbitrary arcs.
Example . Find the integral of f(z) = % around z = 0 traversed contour-clockwise.

solution

Consider C, to be a semi-circle of radius r centered at the origin then

1z

lim dz = (0-7)ie = —7i

r-0Jc, z-0

Note the negative sign because we are starting at an angle = and up to 0.
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22 Real integrals using contour integration

22.1 Trigonometric functions

In this section we consider solving integrals of functions of the form f(cosf,sinf) over the interval

(0,27). This can be done by realizing that for any point satisfying |z| = 1 then we have

2+2 1 =2cosh
-1 ..
z—2z  =2isinf

Hence one can verify that

-1 -1 27
§ f(z+z R )C_lzzf F(cos0,sin)do
el=1 2 20 Jiz o Jo

This can be done by parameterizing || = 1 as €'’ on the interval § € (0, 27). Hence one can use the residue

theorem to compute the complex integral.

22.1.1 Example

Evaluate the following integral

2 sin @
[ : Sin d0
0 sinf+2
solution

Hence we can show

-1
/‘2” sinf ” qu =— dz j{ 22 -1 p
= _— = —_—Az
0 sinf+2 ll=1 2+ 22— iz l2l=1 2(22 + 4iz - 1)

The function has three poles 0, -2i + /3i with the only poles inside the contour 0, (-2 + v/3)i

Res(f,0) = li L_l
N 2 a1

- )= lim  (—(- i @1 _o(2eVB? -1 2
B P Y 1 [ S Ve e Ve R P R

Finally we get the value by summing the residues
2?21 2
—i - dz=9or|1- =
29\2\:1 2(22 +4iz - 1) : 7r( \/§)
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22.2 Integrating around an ellipse
22.2.1 Example

Prove for a,b >0

/‘2” dt 27
0 a2cos?t+b2sin’t ab
solution

Let us integrate the following function

f(z) =+

z

Around the ellipse

()

Figure 6: Integration around ellipse

By the residue theorem

jgf(z)dz - 27i Res(f,0)

The parameterization of the ellipse v(¢) = a cos(t) + ibsin(¢)

2T _ o qj ; J
j]{f(z)dz:/ asmt+.zbc.05tdt
y 0 acost+tbsint
The intgrand simplifies to the following

—asint+ibcost acost—ibsint  (b®—a?)sintcost +iab

X =
acost +1tbsint  acost—ibsint a2 cos?t + b2sin’t

Hence

27 (b? — a®)sint cost + iab
f (b" —a7)sintcost+iab o i Res(f.0) = 2mi
0

a2 cos?t + b2 sin’ t
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By equating the imaginary parts

27 dt
iab [ —5— = 2mi
0 a2cos?t+b2sin”t

Which implies the result

/*QW dt B 2l
0 aZcos?t+b2sin®t ab
22.3 Creating crazy integrals

Theorem. Let f be analytic function in the unit circle |z| <1 such that f # 0. Then
27 .
[ retyde=2m £(0)
0

proof

Since the function f is analytic in and on the contour we have by the Cauchy integral theorem

@ dz = 2miRes(f/z,0)

|2]=1

Use z = e whenere 0 < ¢ < 27

i/% &:)e” dt = 2miRes(f/z,0)
0

e

Note that

s (H20) <ty 10

Hence

[ sty de=2m (0)

22.3.1 Example

Consider the function

f(z) = exp(exp(z))

It then follows from the theorem
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foh exp(exp(exp(it))) dt =2me

Note that
exp(exp(exp(zt) )) _ eecus t+isint
_ ee“”St(cos(sint)Jrisin(sin t))
= " cos(sint) (cos(e“'sin(sint)) + 4 sin(e™* " sin(sint)))
By taking the real part

2m cos << )
f " cos(sint) cos(e®’sin(sint)) dt = 2re
0

22.3.2 Example

F(2) = log(2 + 2)

Where we take the principal logarithm with the branch cut located at y = 0,z < -2

27 i
f log(2 +e™) = 27 log(2)
0

Note that

. int
log(2 +e™) = log|(2 + cost)? +sin?¢| + i arctan( S )
1+cost

1 int
= —log(5+4cost) +1 arctan( S )
2 2 +cost

It follows by taking the real parts

2m
f log(5 +4cost) dt = 4w log(2)
0

22.3.3 Example

By combining the two functions

f(2) = exp(exp(2)) log(2 + 2)

We deduce that
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2m § X t
/ exp(e®! cos(sint))(cos(e! sin(sint)) log(5+4 cost)—2 arctan ( 5 S
0 +

) sin(e®' sin(sint))) dt = 4relog(2)
cost

22.4 Trigonometric functions with rationals of polynomials

Here we are interested in integrals of the form

[

where P(x) is continuous in the real line and of degree 2 or more. You may notice that it is enough to

look at the following function

iaz
e

P(z)

f(z) =
and then take the real part. Generally speaking to solve that we take a semi-circle in the upper half plane
where the contour will enclose some or all of the zeros of P(z). Notice that we may use the Jordan’s
lemma to prove that the circular part goes to zero and what is left is the real integral along the real axis.

224.1 Example

Evaluate the integral

f cos(ax) da
—oo 1?2 + 1
proof
Let use consider the function with a > 0
eiaz
&=

and integrate around the contour in Figure 7

We can write the integral using the residue theorem as

[ e [ f)dz = 2miRes( )

Ra2+1
By taking the limit R — co note that by the Jordan’s lemma the integral along the circular part vanishes

(prove it). Hence we have

f C  dr=2mi Res(f,7)

o T2+ 1

181



Figure 7: Circular contour

The evaluation of the residues

Res(f,4) = lim(z - i) ¢

Finally we get

) eiam
f 5 dx = me™®
—oo I“ + 1

and eventually

f‘x’ cos(ax) dp = e

oo .”L'2+1

(z—1)(z+1) T2

Advice. One might ask how to choose the complex function and the contour. There is no general formula

for that and you can obtain that by experience and trail and error. It is actually a good idea to try different

contours and see why they work!

22.5 Integration along contours with detours

Assume that we need to integrate a function and we have a pole at the path of integration then we have

to make a small detour around the pole with some angle.

22.5.1 Example

Prove the following

f‘x’ sin(x) deo T
0 2

T

proof

Consider the following function
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f) =5

z
Note that in order to integrate a round a semi-circle in the upper half plane we have to make a detour

around the pole at z = 0

Y.
Cr
cr
S
_R -r T R T

Figure 8: Integral with detour

Hence by the residue theorem

R iz —r iz
f e—d:c+/ e—dac+/ f(z)dz+[ f(z)dz=0
T X -R X Cgr C,

Note first by taking R — oo we have by the Jordan’s lemma

R1’1_r)rolofcrf(z)dz:0

Also we know how to deal with detours around poles

12 .
01 — —'R—Z

lim

dz = —mie
r-~0Jc, z-0

Hence we finally get

oo ei:z: 0 eia: '
[ —dx + [ —dx =mi
0 x —oco0 I

By inverting the sign in the second integral

00 T _ p7iT . e sin(zx .
f —dx =21 f Ldm =73
0 T 0 T

By rearranging we have our result.
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22.6 Integrals of functions with branch cuts

We have a serious problem when dealing with functions like f(z) = log(z) or z* where we have a branch
point at 0. In order to evaluate the integral we have to avoid both the branch point and the branch cut.
Generally speaking the integral around a branch point will most probably vanish but this is not taken

for granted. You have actually to prove it first.

22.6.1 Example

Prove the following

/°° log(x) _ mlog(2)
o x%2+2 42

proof

Let us consider the usual integral of a semi-circle with a detour around the branch point at 0. But first
we have to choose an analytic branch of the logarithm.

Consider the following branch

log(z) = log|z| + iarg(2)

where arg(z) € (-7/2,37/2) i.e we are taking the branch cut on the negative imaginary axis. By this

construction we have an analytic function along the path of integration. Now consider the function

1) = B

2242

The zero z = /2i lies inside the semi-circle

r
Branch

Figure 9: Integral of function with branch cut

By the residue theorem
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/Rlog|x|dx+[_r defc f(z)dz+fc f(2)dz = 2miRes(f, V/2i)

x?+2 R x2+2
Note the |log(2)| = |log|z| + iarg(z)| < |log R| + [arg(z)|. Since the argument is bounded we can bound the

function using

log(2)
2242

< [log |z]| + Const
S AP-2

Which vanishes on the larger curve since

. log R + Const
L

Similarly we have

hmr“og r| + Const o
r—0 7"2 -2

Hence it follows by the Estimation lemma that both integrals vanish and

oo ] 0 I )
[ loga| , f %“;”dm = 2miRes(f, V/2i)
o .

2+ 2 o X2+

By rearranging

v ] o
2 f g |z2|d:v+m' / Y~ omiRes(f,/2i)
0 0

x? + 2+2
The residue evaluation
log(V2i) logV2+73i

ReS(fv \/51) 2\/52 = 2\/52

Hence

ool oo d ].O 2+12
2/ Og|x|d$+7ri/ x =7 g\/_ 2
0o 242 o x22+2 V2

By equating the real parts we get our result.

22.6.2 Example

Prove the following

o log (2% + 1) arctan? (z 3
f 8 ( ) ( )dm:£+7rlog2(2)
0 2 12
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solution

Lemma
oo 3 2
f w dz =7 + 3mlog?(4)
0 x
proof
Start by the following
o ) I'(l-p)I'(p-
f x_p(l.q.x)‘s_ldm: w
0 r'(1-s)
Let z —» 22
foo m—2p+1(1 +.’E2)S_1d$ _ F(l —p)F(p B S)
0 2I(1-s)
Letp=3/2

foo L DCYIE2-9)
o 22(1+a2)> oI (1-5)

By taking the third derivative and s - 1

o log> (1 + 22 (-1/2) [ d® T(3/2-s 2
. (2/){dsg2;(/1_3)>L:W3+3mg (4)

Now, Consider the function

~ log® (1 —iz)
- 2

f(2)

z

Define the principle logarithm as follows

log z = log |2| + iArg(2)

Note that for « > 0 the argument can be evaluated as

log z = log\/22 + y2 + iarctan(y/x)
For the principle logarithm the branch cut is defined as J(1 - iz) = 0,93(1 - iz) < 0 which then reduces
forz =z +iytox =0,1+y < 0. Hence the branch cut on the imaginary axis where z = 0,y < -1 . Also
note that f(z) is analytic on the punctured plane since around z = 0

10g3(1 —1iz) _ ((iz) + (12)%/2 + (iz)3]3 + O(2*))3

= 0(22)

z 22
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Hence at z = 0 we have a removable singularity. Define the following contour were we avoid the branch

cut

Branch

Figure 10: Integral with branch cut

x2

_ 3
/CR F2)dz /:Z (log(\/1+a: )w:zarctan(x)) . fOR (log(V/1 +22) +iarctan(x))3dx:0

Apparently

0

o x2) —jarctan(z ’ o T 1arctan(z
[ [T s st

2

T x

Note that

(z+y)* =2 +y® + 32%y + 3yz?

This simplifies to

R _ 2(x)log(1 +22) +1/4log® (1 + 22
/; f(z)dz+f 3arctan®(x)log(1l + z%) + 1/41og”( +x)dx:0
R 0

2

Taking the limit

R2

301 _ = 3
‘f f(z)dz|= ’f Wdz‘ SWR(10g|1+R|+27T) ~oo 0
Cr Cr z

So this simplifies to

> arctan®(z) log(1 + 22 1 e log?(1+ a2
/ arctan®(z) log( +x)dx:—f og”( +al:)daj
0 x? 12 Jo x?

Using the Lemma we reach our result.
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22.6.3 Example

Prove a,b,c,d >0

/‘x’ log(a? + b%2?) dee ™ log ad + be
0 c? +d?x? cd d

proof

Consider the function

log(a — ibz)
2 +d?z2?

f(z) =

We need the logarithm with the branch cut y < -7,z = 0 . Note that this corresponds to

log(a +1ibz) =log\/(a +y)2 +b2z2 +i0 , 0 ¢ [—g, 3%)

Consider the contour that avoids the branch-cut on the negative imaginary part

Branch

Figure 11: Contour with branch cut on the imaginary axis

/C f(z)dZ“L](;pMdﬂf‘F[OdeZQWiRes(f,gi)

c? + dz? p 2 +dx?

In the second integral let x — -

c? + dx?

p —i p ]
fcp f(z)dz+ /0 log(a - ibx) dx + /0 7102(61;;[);) dx = 27i Res (f7 gz)

Note that in the x-axis we have

log(a + bixz) =log(Va? + b2x?) + i arctan (b—m)
a
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Using that we deduce

log(a - biz) +log(a + ibx) = log(a® + b*z?)

This implies to

2,122
f f(z)dz+prdx:QWiRes(f,Ei)
c, 0 d

c? + dzx?

For the circular part

log(a +bp) + 27

1 .
f og(a —1ibz) "
CP

c? +d?z?

Let us look at the residue

‘ c. ... log(a-ibz) = ad + be
2 R - = 2 l _— - il
e (f ’ dz) TN @ T ed B d

Hence this simplifies to

/oo log(a? + b%2?) P log ad + be
0 c? + dx? cd d

22.6.4 Example

Prove the following

f‘x’ log(x) cos(x) 7Ei(1) =«
OBV COL) 1 = — _
0 (z2+1)2 e de

proof

Consider the following function

_ IOg(Z) iz
f(Z) - (22 +1)26

Now consider the the branch of the logarithm

log(z) =log|r|+i6 ,6 € (-7/2,37/2]

Consider the contour in Figure 12

Then by the residue theorem

fc*Rf(z)dZ+fc,,f(Z)dZ+ TRMe”dx+/__r we”dwz?ﬂf{es(f,i)

(x2 +1)?2 R (a2 +1)2
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\r R

Figure 12: Contour with detour around 0

Which simplifies to

[CRf(z)dz-t-fcrf(z)dz-k TRMBiId:E-F‘/;RwS%IdI:27TiReS(f,i)

(22 +1)2 (22 +1)2

/CR f(2) dz+fcr f(2) dz+2fRCO§§§)+lolg)(2x) dx + i f ($2 5 dx = 2miRes(f,1)

Note that for the semi-circle Re®

log(R) +i6

< log R + 27
(R2e20 + 1)2

- (R2-1)?

Mg = mMaxge[o,r]

It follows by the Jordan’s lemma

li dz=0
im CRf(z) z

R—oo

For the smaller semi-circle

. ™ logr+im .0 4
fCTf(Z)dz=zr 0 m@ e df

Note that by a similar argument to the Jordan’s lemma we have

hm < hm mrM, -0

, f(2)dz

It follows then

> cos(z) log(z) [ e .
2[ 1) dx+mf0 mdzz%mf{esif(z)

Evaluating the residue

190



. d g log(z) ;.\ w+i
Resif(z):lzlir%dz((z—z) m@ =i

Note that

© e Ei(1
[ = T
o (22+1)2 2e 2e

Since
2 [T ) g 2mi (51
o (a2+1)2 2e
By integrating around a semi-circle in the upper half plane
cos(x) dee

o (x2+1)2 2e

For the other integral, It is easy to see that

fow sin(x) d = i[e‘“Ei'(a) - eFi(-a)]

22 +a? 2a

By differentiation and letting ¢ — 1 we have

*© sin(z) d - Ei(1)
0o (22+1)2 2e

We deduce that

2[m10g(x €OS(®) gy (T =B :27r'(1+f
(z2+1)2 2e 2e

This simplifies to

f°° log(x) cos(x) dp _7Ei(1)
0 (z2+1)2 de de

22.6.5 Example

Prove the following

oo xa
[ dx = —mese(ma)
o x+1

proof

Consider the following function
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Pl ealog(z)

f(z) = =

1+2 1+2

We consider the branch of the logarithm

log(z) =In|z|+1i6, 0 € [0,27)

This function is single-valued and on the integration path we have
) < 0—-0
ealog(z) _ xaezea _
% 6271'041' 0 - 21

Integrating around contour (called key-hole contour) as in Figure 13

Y.

Y
=

Figure 13: Key hole contour

By the residue theorem we have

j§ £(2)dz = 2mi Res(f, -1)

Which becomes

fcp f(z)dz+fce f(z)dz+fepf(z)dz—fspf(z)dz:%m'Res(f,—l)

By the chosen branch of the algorithm we have

/;,pf(z)dz+/cé f(z)dz+f6pxxa dx — ¢*mie fep " dx = 2miRes(f, 1)

+1 r+1

Note for the circle |z| = p we have
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a+1

2 |2 p
f(2)dz| < 2rpmax < 2mp =2
‘12 T e I TR PR
Note the triangle inequality
Jw + 1] 2 [Je] = [1]
Note that if -1 < o < 0 we get
poz+1
lim 515 f(z)dz| <2m -0
p=eo Jlel=p o -1
Similarly we have
6a+1
lim}g f(z)dz| <27 -0
>0 J|z|=¢ ( ) |€ - ].|

We deduce that as ¢ - 0 and p - oo

(1 - 2o f T e = 2miRes(f,-1) , -1<a<0
o x+1
Notice that
Res(f,-1) = hm1 e@108(2) _ palln|-1l+mi) _ jai

Hence we have

oo o aTi 27
f T dr=2mi S - = Rl —mese(mra)
0 r+1 1- e2a7rz e~ _ pTioL
Note we can deduce the Euler reflection formula
P(a)l(1 - «) = 7ese(mar)
22.6.6 Example
Prove the following
al(m+1)

/2
A COS(’I’Lt) Cosm(t) dt = gmil] ( n+gL+2 ) T ( 2—r;+m)

proof
Let us integrate the following function
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f(z)=z""m"1 (1 + 22)m

We choose the principle logarithm where

log(z) =log|z| + Arg(2)

Note that the function 2" "1 = ¢(m=m=110g(2) wil] have a branch cut on the negative z axis. Also we
g

have

(1 +22)m _ emlog(l+z2)

The principle branch will be on the imaginary y axis where |y| > 1 which implies that y > 1 or y < -1. We

integrate around the semi-circle of radius 1 as in Figure 14

—7 e

Figure 14: Semi-circle indented at the branch points

By the residue theorem
—i+1

/; f(,z)d,7,'-k/;€2 f(z)dz+ﬁ£3 f(z)dz+fij:1f(z)dz+[i62 63f(,z)dz-t—/;f(z)d,z:()

I'll prove the second integral goes to 0

€1

Use the parameterization 7., (t) = exe’ | -7/2 <t < 7/2

<mlog(2)e;™™

w2 .
ey ™ f ) et log(1 + (626”)2) dt
—1/2

By taking the limit we deduce the integral goes to 0. Similarly we have

lim [
e1—0 J,

f(z)dz:elzit_%[e f(z)d==0

€1 Yes
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Note on on the circular part of |z| = 1

w2 .
dz =i f it _int—imt—it 1+ 24t dt
/Cf(z) z=1 _ﬂ/Qee (1+€)
m/2 . .
= [ emt(e—zt + ezt)m dt
-m/2
:i2mf e cos™ (t) dt
-/2

The integrals reduce to

0 m i m 2
f el (1+ x2) dr + / gnml (1+ 332) dx = —i2™ f ) e cos™ (t) dt
i 0 —m/2

By taking = = it and = = —it respectively

—zf (it)"™ 1 dt—z/ (—it)" ! (1- t2 dt——szf ™ cos™ (t) dt

We then can combine the integrals

1 m /2
_Z-((Z-)n—m—l + (_i)n—m—l) f tn—m—l (1 _ t2) dt = _,L-Zm [ / eznt COSm(t) dt
0 /2

Note that

_(in—m _ (_Z)n—m) - _ (ei(n—m)w/Z _ e—i(n—m)7r/2) - _9isin (nﬂ' —2m7r)

We deduce that

/2 .
f/ e cos™ (t) dt = 27" sin (mr mw)/‘ T - 2™ dt
-m/2

Using the Euler formula we have

/2 _ 1
f cos(nt)cos™(t)dt =27 sin(LQWr) / (1 - 2™ dt
0 0

Note the beta integral

")

o F(m+1)I‘(”
em 1 1_t2 ™t = 2
[0 ( ) (n+m+ )

By the reflection formula we have

()

2 ) B sin(im_zm”)
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We deduce then that

al(m+1)

om+1T (n+72n+2 ) T ( 2—1’;+m )

/2
f cos(nt) cos™(t) dt =
0

22.7 Rectangular contours

In this section we consider the case of a rectangular contour. Usually considering such contours we have
to separate the contour into four integrals. Note that such contours are useful for evaluating integrals of

hyperbolic functions and infinite series in general.

22.7.1 Example

> cos(ax) (wa)
S
.[oo cosh(z) d = msec 2
proof

Consider

iaz

B sinh(z)

f(2)

If we integrate around a contour of height 7 and stretch it to infinity we get

wif2-T wif2+T

—mif2-T —mi/2+T

Figure 15: Rectangular contour

By taking T" — oo

[ e [T p@ydes [ payae e [T fe) e = 2mimes1.0)

im /2400 im[2+00 im[2—o00 —imw[2—00

Consider

—i7[2+00 eia:v
d
[iﬂ'/Q—oo sinh(x) v
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Letz =-mif2+y

za [ 'Y
ie2

d
-0 cosh(y) 4

Similarly we have for
im[2—00 iar
[ e,
im/2+00  sinh(x)
By letting x = mi/2 +y

xa [ e

—d
-0 cosh(y) Y

Now consider the sum of the two remaining integrals

iT[2400  plax —im/2-00  law
[ e
—im/2+00 sinh(x) ir/2-0  sinh(z)

Let - -z in the second integral and summing

im[2+00 plAT _ ,—iax im/2+00 i
/ e e dm:Qi/ sin(ax) de

im/2+00  sinh(x) ir/2+00 sinh(x)

Let consider for simplicity

fm/2+T sin(z) b

ir/2+T sinh(x)

Lety=-i(x-T)

/2 sin(i /2 gj 7/2+T g
—i/ sm(z(y+T))d B z/ Slnh(y+T)dy:—if smh(y)d

2 sinh(i(y+T) ©  J-nj2 sin(y+7T) x/2+T sin(y)

Hence by taking T' — oo we are integrating around an infinitely small area which goes to 0

1 (67 + 6_7) [oo cthw dy = 2miRes(f,0)

Calculating the residue we have

az az

=i =li =
Res(f,0) zl—r>r(1)zsinh(z) 50 cosh(z)

Using that we get

iy 2r
[ dy = Ta Ta
—oo cosh(y) ez +e 2
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By taking the real part

/ cos(ay) dy = msech (za)
—oo COSh(y) 2

22.7.2 Example

oo 1 cosh(y+Z 2
[ %) gy - 2 (reomn () - s (7))
—o0 (52 + 81y +16y2) cosh (v) 3 4 4

proof

Consider
sinh(z)

()= zsinh®(z - 7/4)

If we integrate around a contour of height 7 and stretch it to infinity we get

wif2-T mwif2+T

w/4 e

-mif2-T -mi/2+ T

By taking T — oo

i [2+00 47 [2—00 —im[2—00 —im[2+00 T
f flx) dac+/ f(x) dx+f f(x) dx+f f(x)dx =2miRes(f, —)
- 7 [ 2+ 00 i [2—00 /2—00 4

i [2+00 i —im

Consider

f*iﬂ’/2+oo Slnh(l‘) d
T e—— 4

ir/2-00  xsinh®(z - 7/4)

Letx=-7/2i+7/d+y

_f"" 1 cosh(w/4+y)d
—oo —im[2+ T[4 +y coshg(y) Y

Similarly we have for

fi”/2‘°° sinh(x)

n/2+00  xsinh®(x - 7/4)

By letting x = in/2 + /4 +y
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/"" 1 cosh(m/4 +y) J

o im[2+m[4+y  cosh®(y)
The other integrals go to 0 hence

1 cosh (y+ %)

ot
™ ) (572 + 8y + 16y%)  cosh®(y)

dy = 2miRes( f, Z)

Calculating the residue we have

1 cosh (y + %) —(16(m cosh(m/4) — 4sinh(rm/4))

dy = 27i ;
Y 3

ot | ,
™ ) (572 + 8my +16y2) cosh®(y)

Which reduces to our result

=) 1 ~h + 9
f o8 (z 4)dy=,(WCOSh(ﬂ-)—ZLSiHh(Tr))
-0 (52 + 8wy +16y2) cosh (v) 3 4 4

22.7.3 Example

Prove the following

f sin(az) dz = 1 coth (Q) _ 1
0o e —1 4 2) 2a

solution

By integrating the following function

iaz
e

eQ‘n’z -1

f(z)=

The function is analytic in and on the contour, indented at the poles of the function

. R+1
2 'J_(—
s gl
Y AN
1€9 \q€2
€9 ” R

Figure 16: Indented rectangular contour

Hence by the residue theorem
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R R+i i+es i—ie1
f(z)derf62 f(w)dx+[R f(x)dx+'/R+i f(m)da:+[y f(z)clz——/i62 flx)dz=0

/

Let us first look at R — oo

€2

The vertical line

1 eia(R+ia:R)

iR 0 e2m(R+izR) _ 1 dz

R+i iax
e
f prrrii i
R e — 1

za(R+m:R)|
Rf 627T(R+’LZL’R) _ 1| dx

—-azR
< m A e dz

1 -aR
:m(l—e )"’ooO

The other vertical line

i(l-€1) ax (1-€1) —-ax
[ ¢ dr =1 [ 6,7 dx
i€o 62” -1 €2 627”'7C -1
1 (1-€1) —-ax
A a—
2 sin(mx)ei®
(1 61) —azxr
[ c dx
) sin(7wz)eim®

(1-€1) ; (1-€1)
f o mc)e Ty — - [ e
T2 sin(7x) 2 Je,

Since the first integral diverges when €1,e2 - 0

iax 1 1—e@
- Cda=PV CoS(MT) maw gy ;L2

PV
0 e o 2sin(wx) 2a

The remaining integrals can be evaluated using residues

tim [ f(z)dz= - Res(f,0)= -

€220 Jre,

lim /7 F(2)dz - —%Res(f,i) - —%e‘a

6190 €1
By combining the results together
oo gla(wti) L cos(mx) 1-e®* e %+1

) iax
Pvf  ge-pv [ S - COSUTL) -a g 4 4 =4
0 e2me 1 0 e2m(z+i) _ 0o 2sin(mx) 2a 4

Which reduces to
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e )PV f dx PV f cos(mx) a7 gy Z_e‘a +1 ; 1-e®
2sin( 7m:) 4 2a

By equating the imaginary parts

foo Sln(ax) dx = ECOth (g) - i
0o er—1 4 2] 2a
22.8 Triangular contours

22.81 Example

fo‘” co\s/(}x) dw:fom sir\l/(g) o g

solution

Choose the function with the principal logarithm

f(Z) _ Z—1/2 eiz _ e—l/2log(z)+iz

By integrating around the following contour
iR

i

Figure 17: Triangular contour

By the residue theorem

fCTf(Z)dZ+erf($)dx+_[Yf(z)dz*'fi:Rf(x)dl“:O

Taking the integral around the small quarter circle with » — 0

‘fcrf(z)dz <

On~(t)=(1-t)R+iRtand 0<t <1

’Lf(z)dz

2 /9 ricit
e—z/ erie dt

w/ )
v [Tl o

= ‘R(Z -1) fl o~ 1/210g(R(1-t)+iRt) ji(1-t)R-Rt g < \/ﬁfl
’ 0

e—Rt
Ry
YA-D2+12
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Note that on the interval /(1 - )2 + 2 > /2

Lf(z) dz

Finally what is remaining when r - 0 and R — oo

<21/4¢§f1 w20 my g
< e =——(1-e") ~e
0 VR

/(; f/'x;dx :ifo (iz) ™2™ da

Note that i71/2 = ¢~i7/4

Using that we have

f0°° co\s/(}x) dxz[)oo sin\/_(;c) dr - g

22,9 Residue at infinity

Define the residue at infinite as the following

Res(f,00) = —Res( ! f(é) ,O)

22
This is useful especially considering integrals where we wrap the contour around the whole complex
plain by adding the point at infinity. Hence if we exclude a certain region of the complex plain and

integrate around the whole complex plain (think about it as a sphere) then we can apply the residue

theorem using the residue at infinity.

22.9.1 Example

Prove that

1
f ﬁ\/l—zdx:%
0

proof

Consider the function

f(z)=Vz-22= g3 log(==2%)
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Consider the branch cut on the x-axis
z(l-2)>0 = 0<z<1

Let w = z — 22 then

log(w) =log|w|+ 16, 6 €[0,27)

Consider the contour where we avoid the two branch points

C1

Co
—————~
AN

Figure 18: Dumbbell contour

By the residue theorem we have

1-€ 1-€ .
f f(z)dz+ / f(z)dz+ [ ez lole=a’l gy f ez losle—a®lemi g 2miRes(f, 00)
Co C1 € €

Consider the Laurent expansion of

Vz-22=iVz? 1—1:2;250:(1/2)(—1)]c

Hence we deuce that

That implies

fCOf(z)dz+f01f(z)d2+2[1_6ﬁmdx:%

The contours around the branch points go to zero. Finally we get

1
f ﬁ\/l—xdx:g
0
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22.10 Inverse of Laplace transform

The inverse Laplace transform is defined in the complex plain as

+iT
£ = CFY0) = o fim [T (s

22,10.1 Example

1 c+ioo T b
— f (o + )T (b— )5~ dt = -9*0)
27 Je—ioo (1 + s)a+b

proof
Consider the following function

f(z)=T(z+a)l'(b-2)s~

Suppose that a,b € R and a < b. Note that the Gamma function has a pole of order 1 at each non-positive

integer where we have

-1\
Res(T',—n) = (1)
n!
The function f has poles at the following points
-n-a,-(n-1)-a,-,—-a,b,b+ 1, b+n

Notice that the function f is analytic on the region —a < Re(z) < b, hence consider the contour in Figure

19.

c—1T

Figure 19: Bromwich contour

By the residue theorem
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c+iT n
[CR f(z)dz+ ﬁ_iT f(2)dz= QWil;)ZE?Ekf(z)

By taking the limit — oo we have
c+ioo o0
lim f f(z)dz+[ f(t)dt=2mi )" Res f(z)
R—oco JCR c—100 =0 z=—a—k
Note that

(-D*T(a+b+k) 4k
I'(k+1)

_ReskF(z +a)l(b-2)s*=T(b+a+k) lim kF(—k)s‘”k =

Note that

k

S T(a+b+k) s
k!

a _ a [e<] (
s Z%W(—S)k =sT(a+b) I;)(a +b)g

By definition of the Hypergeometric funciton

=oFi(1;1,a+b,-5)

oo _\k T b
sT'(a+b) k;)(a +b)g ( ]:') =sT(a+b)oFi(a+b,1;1,-5) = (1(fs+)azbs“
Also notice that
li dz=0
B, Jo, 122

So we deduce that

1 cHioo _ T(a+b)
— T(a+0(b—t)stdt = —2"2) ga
i fH-oo (a+ )l -1)s (1+5)ed”

22.11 Infinite sums

If we have an infinite number of poles then by taking a contour that covers all of them we have an infinite

number of residues that create an infinite series.

22.11.1 Example

Prove that

=2¢(3)

197
:M‘E

S
I
—_

proof

Consider the function
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Note that f has poles at non-negative integers

By integration around a large circle |z| = p

Cp

Figure 20: Contour |z| = p

Note that

51{ f(2)dz =2mi(Res(f,0) + iRes(f,n))

The integration around the circle

S R P (U
|z|=p P

22

As |z| > oo we have ¢(-z) ~log(-z) and the principle logarithm

_ 2 2
<o (o2 +hD? _, (log()+2n kD>
0

JRC
|z[=p P

22

We deduce that

2mi(Res(f,0) + iRes(f,n)) =0

By expansion near z = 0

W2+’ 140 (3

22 22 22 z

Which implies that

206



Res(f,0) =-2¢(3)

For the residues at non-negative integers n, the expansions

(z=n)’

1 &, i+l
2 _1J( ) j
sesev (e

P(2) by = — w Hy e S (C)FHED ¢k + 1)) (2 - )"
£-n k=1
This implies that
1 H,
(h(=2) +7)% »

G-m2 (z-n)

This implies the residue

H, 2
Res(f,n) = 2? -3
We then deduce that
> [1H, 1
23 [ 22— —|-2¢(3)=0
ZJHQ ]2
Finally we get
oo Hn
Y 5 =2¢(3)
n=1 1

207



References

[1] Leonard Lewin. Polylogarithms and associated functions. New York, 1981.

[2] Marko Petkovsek, Herbert Wilf, Dorom Zeilbegreger. A=B. Philadelphia, 1997.

[3] Pedro Freitas. Integrals of polylogarithmic functions, recurrence relations and associated Euler sums. 2004.
[4] Gradshteyn, Ryhik. Edited by Alan Jeffrey, Daniel Zillinger. Table of integrals, series and products. 2007.

[5] Habib Muzaffiar, Kenneth Williams. Evaluation of complete elleptic integrals of the first kind at singular
moduli. 2006.

[6] Stefan Boettner, Victor Moll. The integrals in Gradshteyn and Ryzhik, Part 16: Complete elliptic integrals.
2010.

[7] Factorial, Gamma and Beta function http://mhtlab.uwaterloo.ca/courses/me755/web_chapl.pdf
[8] Keith Conrad. Differentiation under the integral sign.

[9] http://www.mymathforum.com

[10] http://www.mathhelpboards.com

[11] http://www.mathstackexchange.com

[12] http://www.integralsandseries.prophpbb.com

[13] http://www.wikipedia.org

[14] http://mathworld.wolfram.com

[15] http://dlmf.nist.gov/

[16] Dennis G. Zill, Patrick D. Shanahan. A First Course in Complex Analysis with Applications. 2003.
[17] G. N Watson, M.A. Complex integration and Cauchy’s theorem. 1914.

[18] Ravi P. Agarwal, Kanishka Perera, Sandra Pinelas. An Introduction to Complex Analysis. 2011.

208



	Differentiation under the integral sign
	Example
	Example
	Example

	Laplace Transform
	Basic Introduction 
	Example

	Example
	Convolution
	Inverse Laplace transform
	Example

	Interesting results 
	Example
	Example
	Example


	Gamma Function
	Definition
	Example
	Example
	Exercises
	Extension
	Theorem
	Reduction formula

	Other Representations
	Euler Representation
	Example
	Weierstrass Representation

	Laurent expansion
	Example
	More values
	Legendre Duplication Formula
	Example
	Euler's Reflection Formula
	Example
	Example

	Beta Function
	Representations
	First integral formula
	Second integral formula
	Geometric representation

	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Exercise

	Digamma function
	Definition
	Example
	Difference formulas
	First difference formula
	Second difference formula

	Example
	Series Representation
	Some Values
	Example
	Integral representations
	First Integral representation
	Second Integral representation
	Third Integral representation
	Fourth Integral representation

	Gauss Digamma theorem
	More results
	Example
	Example
	Example
	Example
	Example

	Zeta function
	Definition
	Bernoulli numbers
	Relation between zeta and Bernoulli numbers
	Exercise
	Integral representation
	Hurwitz zeta and polygamma functions
	Definition
	Relation between zeta and polygamma

	Example

	 Dirichlet eta function
	Definition
	Relation to Zeta function
	Integral representation

	Polylogarithm
	Definition
	Relation to other functions
	Integral representation
	Square formula
	Exercise
	Dilogarithms
	Definition
	First functional equation
	Second functional equation
	Third functional equation
	Example
	Example
	Example
	Example


	Ordinary Hypergeometric function
	Definition
	Some expansions using the hypergeomtric function 
	Exercise
	Integral representation
	Transformations
	Special values 

	Error Function
	Definition
	Complementary error function
	Imaginary error function 
	Properties
	Relation to other functions
	Example
	Example
	Example
	Example
	Exercise

	Exponential integral function
	Definition
	Example
	Example
	Example
	Example
	Example
	Exercise

	Complete Elliptic Integral
	Complete elliptic of first kind
	Complete elliptic of second kind
	Hypergeometric representation
	Example
	Identities
	Special values
	Differentiation of elliptic integrals 

	Euler sums
	Definition
	Generating function
	Integral representation of Harmonic numbers
	Example
	Example
	General formula
	Example
	Example
	Example
	Relation to polygamma
	Integral representation for r=1
	Symmetric formula
	Example

	Sine Integral function
	Definition
	Example
	Example
	Example
	Example
	Example
	Example
	Example

	Cosine Integral function
	Definition
	Relation to Euler constant
	Example
	Example
	Example
	Example
	Example
	Example

	Integrals involving Cosine and Sine Integrals
	Example
	Example

	Logarithm Integral function
	Definition
	Example
	Find the integral
	Find the integral
	Example
	Example

	Clausen functions
	Definition
	Duplication formula
	Example
	Example

	Clausen Integral function
	Definiton
	Integral representation
	Duplication formula
	Example
	Example
	Example
	Second Integral representation
	Example

	Barnes G function
	Definition
	Functional equation

	Reflection formula
	Values at positive integers
	Relation to Hyperfactorial function
	Loggamma integral
	Glaisher-Kinkelin constant
	Relation to Glaisher-Kinkelin constant
	Example
	Example
	Relation to Howrtiz zeta function
	Example

	Complex Analysis
	Introduction to complex numbers
	Polar representation
	Complex functions
	Exponential function
	Sine and Cosine and hyperbolic functions
	Complex logarithm

	Taylor and Laurent expansions
	Poles and residues
	Integration around paths
	Bounds on integrals
	Contours around poles

	Real integrals using contour integration 
	Trigonometric functions
	Example

	Integrating around an ellipse
	Example

	Creating crazy integrals
	Example
	Example
	Example

	Trigonometric functions with rationals of polynomials 
	Example

	Integration along contours with detours
	Example

	Integrals of functions with branch cuts
	Example
	Example
	Example
	Example
	Example
	Example

	Rectangular contours
	Example
	Example
	Example

	Triangular contours
	Example

	Residue at infinity
	Example

	Inverse of Laplace transform
	Example

	Infinite sums
	Example





