Tag Archives: cosine

Prove that  $$\int^1_0 \frac{\cos(\log x)}{x^2+1}\,dx = \frac{\pi}{4}\mathrm{sech}\left( \frac{\pi}{2}\right)$$ First note that $$2 \int^1_0 \frac{\cos(\log x) }{x^2+1}\,dx = \int^\infty_0 \frac{\cos(\log x)}{x^2+1}\,dx$$ Integrate the following function $$f(z) = \frac{e^{i\log(z)}}{z^2+1}$$ Around a semi-circle in the upper half place. Where we avoid the branch … Continue reading

Posted in Contour Integration | Tagged , , , , , , , | Leave a comment

$$\int^{\infty}_{-\infty} \frac{\cos(ax)}{\cosh(x)} \,dx = \pi \, \mathrm{sech} \left( \frac{\pi a}{2}\right)$$ $$\textit{proof}$$ Consider $$f(z) = \frac{e^{iaz}}{\sinh(z)}$$ If we integrate around a contour of height $\pi$ and stretch it to infinity we get By taking $T \to \infty … Continue reading Posted in Contour Integration | | Leave a comment Integral of rational function with cosine hyperbolic function using rectangle contour  \int^{\infty}_{-\infty} \frac{1}{(5 \pi^2 + 8 \pi y + 16y^2) }\frac{\cosh\left(y+\frac{\pi}{4} \right)}{\cosh^3(y)}dy=\frac{2}{\pi^3}\left(\pi \cosh\left(\frac{\pi}{4} \right)-4\sinh\left( \frac{\pi}{4}\right) \right) \textit{proof} Consider f(z) = \frac{\sinh(z)}{z \sinh^3(z-\pi/4)} If we integrate around a contour of height \( \pi$ and stretch it to infinity we … Continue reading

$$\int_{0}^\infty \frac{\log(x)\cos(x)}{(x^2+1)^2}\,dx = – \frac{\pi \mathrm{Ei}(1)}{4e}-\frac{\pi}{4e}$$   $$\textit{proof}$$ Consider the following function $$f(z) = \frac{\log(z) }{(z^2+1)^2}e^{iz}$$ Now consider the principle logarithm where $$\log(z) = \log|r|+i \theta \,\,\, , \theta \,\in (-\pi , \pi]$$ Consider the following contour   Then by … Continue reading