# Tag Archives: difference

## Square difference formula for polylgoarithm proof

$$\mathrm{Li}_{\,n}(-z) + \mathrm{Li}_{\,n}(z) = 2^{1-n} \,\mathrm{Li}_{\,n}(z^2)$$ $$\textit{proof}$$ As usual we write the series representation of the LHS $$\sum_{k=1}^\infty \frac{z^k}{k^n}+\sum_{k=1}^\infty \frac{(-z)^k}{k^n}$$ Listing the first few terms $$z+\frac{z^2}{2^n}+\frac{z^3}{3^n}+\cdots +\left(-z+\frac{z^2}{2^n}-\frac{z^3}{3^n}+\cdots \right)$$ The odd terms will cancel $$2\frac{z^2}{2^n}+2\frac{z^4}{4^n}+2\frac{z^6}{6^n}+\cdots$$ Take \( 2^{1-n} … Continue reading

Posted in Dilogarithm, Polylogarithm | | 1 Comment

$$\mathrm{Li}_2(z) + \mathrm{Li}_2 \left(\frac{z}{z-1} \right) = – \frac{1}{2} \log^2 (1-z) \,\,\,\, \, z<1$$ $$\textit{proof}$$ Start by the following $$\mathrm{Li}_2 \left(\frac{z}{z-1} \right) = -\int^{\frac{z}{z-1}}_0 \frac{ \log(1-t)}{t}\, dt$$ Differentiate both sides with respect to $z$ $$\frac{d}{dz}\mathrm{Li}_2 \left(\frac{z}{z-1} \right) = \frac{1}{(z-1)^2}\left( \frac{ \log … Continue reading Posted in Dilogarithm, Polylogarithm | Tagged , , , | 1 Comment ## Dilogarithm functional equation proof$$\mathrm{Li}_2(z) + \mathrm{Li}_{2}(1-z) = \frac{\pi^2}{6}-\log(z) \log(1-z) \,\,\,\, ,\,0<z<1\textit{proof}$$Start by the following$$\mathrm{Li}_2\left(z\right) = -\int^{z}_0 \frac{\log(1-t)}{t} \, dt $$Now integrate by parts to obtain$$\mathrm{Li}_2\left(z\right)= -\int^z_0 \frac{\log(t)}{1-t} \, dt -\log(z) \log(1-z) $$By the change of variable \(t=1-x … Continue reading Posted in Dilogarithm, Polylogarithm | | 1 Comment ## Digamma difference formula proof$$\psi(1-x)-\psi(x)=\pi \cot(\pi x) \textit{proof}$$We know by the reflection formula that$$\Gamma(x)\Gamma(1-x)=\pi \csc(\pi x) $$Now differentiate both sides$$\psi(x)\Gamma(x)\Gamma(1-x)-\psi(1-x)\Gamma(x)\Gamma(1-x)=-\pi^2 \csc(\pi x)\,\cot(\pi x) $$Which can be simplified$$\Gamma(x)\Gamma(1-x)\left(\psi(1-x)-\psi(x)\right)=\pi^2 \csc(\pi x)\,\cot(\pi x) $$Further simplifications using ERF results in$$ … Continue reading

Posted in Digamma function | Tagged , , | Leave a comment