-
Recent Posts
- Integrating a cosine log integral around a semi-circle contour
- Creating Difficult integrals by the residue theorem
- Proving a trigonometric integral by integrating around an ellipse in the complex plain
- Integrating a fraction of exponential and trignometric using rectangular contour
- Integrating around a triangular contour for Fresnel integral
Recent Comments
- Ricardo on Integral representation of the digamma function using Abel–Plana formula
- Zaidalyafeai on Integral representation of the digamma function using Abel–Plana formula
- Ricardo on Integral representation of the digamma function using Abel–Plana formula
- Zaidalyafeai on Integral of arctan and log using contour integration
- tired on Integral of arctan and log using contour integration
Archives
Categories
Meta
Tag Archives: exponential
Contour integraion of a rational function of logarithm and exponential
$$\int_{0}^\infty \frac{\log(x)\cos(x)}{(x^2+1)^2}\,dx = – \frac{\pi \mathrm{Ei}(1)}{4e}-\frac{\pi}{4e}$$ $$\textit{proof}$$ Consider the following function $$f(z) = \frac{\log(z) }{(z^2+1)^2}e^{iz}$$ Now consider the principle logarithm where $$\log(z) = \log|r|+i \theta \,\,\, , \theta \,\in (-\pi , \pi]$$ Consider the following contour Then by … Continue reading
Posted in Contour Integration
Tagged contour, cosine, exponential, fraction, Integral, proof, residue, theorem
Leave a comment