Tag Archives: Hard

Triple integral with sines and cosines

Find the integral $$\begin{align}\int^\infty_0 \int^\infty_0 \int^\infty_0 \frac{\sin(x)\sin(y)\sin(z)}{xyz(x+y+z)}(\sin(x)\cos(y)\cos(z)\\ + \sin(y)\cos(z)\cos(x) + \sin(z)\cos(x)\cos(y))\,dx\,dy\,dz \end{align}$$   $$\textit{solution}$$ This can be rewritten as $$3\small\int^\infty_0 \int^\infty_0 \int^\infty_0 \frac{\sin^2(x)\sin(y)\cos(y)\sin(z)\cos(z)}{xyz(x+y+z)}\,dx\,dy\,dz$$ Now consider $$\small F(a) = 3\int^\infty_0 \int^\infty_0 \int^\infty_0\frac{\sin^2(x)\sin(y)\cos(y)\sin(z)\cos(z) e^{-a(x+y+z)}}{xyz(x+y+z)}\,dx\,dy\,dz$$ Taking the derivative $$\small F'(a) = -3\int^\infty_0 \int^\infty_0 … Continue reading

Posted in Uncategorized | Tagged , , , , | 2 Comments

The most ugly looking integral

Prove the following $$I= \log \left\{\frac{\Gamma(b+c+1) \Gamma(c+a+1)\Gamma(a+b+1)}{\Gamma(a+1) \Gamma(b+1) \Gamma(c+1) \Gamma(a+b+c+1)} \right\}$$   where   $$I = \int_0^1 \frac{(1-x^a)(1-x^b)(1-x^c)}{(1-x)(-\log x)}dx$$ $$\textit{proof}$$ First note that since there is a log in the denominator that gives as an idea to use differentiation under … Continue reading

Posted in Digamma function, Gamma function | Tagged , , , , , | Leave a comment