Tag Archives: logarithm

Integral of arctan and log using contour integration

$$\int^\infty_0\frac{\log\left(x^2+1 \right)\arctan^2\left(x\right)}{x^2}\,dx = \frac{\pi^3}{12}+\pi \log^2(2)$$ Lemma $$\int^\infty_0 \frac{\log^3(1 + x^2)}{x^2}\,dx = \pi^3+ 3 \pi \log^2(4)$$ Start by the following $$\int^{\infty}_0 x^{-p}(1+x)^{s-1} dx= \frac{\Gamma(1-p)\Gamma(p-s)}{\Gamma(1-s)}$$ Let \( x\to x^2 \) $$\int^{\infty}_0 x^{-2p+1}(1+x^2)^{s-1} dx= \frac{\Gamma(1-p)\Gamma(p-s)}{2\Gamma(1-s)}$$ Let \( p = 3/2 \) $$\int^{\infty}_0 \frac{1}{x^2(1+x^2)^{1-s}} … Continue reading

Posted in Beta function, Contour Integration | Tagged , , , , , , , , | 4 Comments

Contour method for shifted logarithm branch

Prove  \( a,b,c,d >0 \) $$\int^\infty_0 \frac{\log(a^2+b^2x^2)}{c^2+d^2x^2}\,dx = \frac{\pi}{cd} \log \frac{ad+bc}{d}$$ Consider the function $$f(z) = \frac{\log(a-ibz)}{c^2+d^2z^2}$$ We need the logarithm with the branch cut \( y<-\frac{a}{b} , x =0 \) . Note that this corresponds to $$\log(a+ibz) = \log\sqrt{(a+y)^2+b^2x^2}+i\theta … Continue reading

Posted in Contour Integration | Tagged , , , , , , , | Leave a comment