Tag Archives: residue

Integrating a cosine log integral around a semi-circle contour

Prove that  $$\int^1_0 \frac{\cos(\log x)}{x^2+1}\,dx = \frac{\pi}{4}\mathrm{sech}\left( \frac{\pi}{2}\right)$$ First note that $$2 \int^1_0 \frac{\cos(\log x) }{x^2+1}\,dx = \int^\infty_0 \frac{\cos(\log x)}{x^2+1}\,dx$$ Integrate the following function $$f(z) = \frac{e^{i\log(z)}}{z^2+1}$$ Around a semi-circle in the upper half place. Where we avoid the branch … Continue reading

Posted in Contour Integration | Tagged , , , , , , , | Leave a comment

Creating Difficult integrals by the residue theorem

Theorem Let \( f \) be analytic function in the unit circle \( |z|\leq 1 \)  such that \( f\neq 0\) . Then $$\int^{2\pi}_0f(e^{it})\,dt =2\pi \, f(0) $$ $$\textit{proof}$$ Since the function \(f \) is analytic in and on the … Continue reading

Posted in Contour Integration | Tagged , , , , , , , | Leave a comment

Proving a trigonometric integral by integrating around an ellipse in the complex plain

Prove for \(a,b > 0\) $$\int^{2\pi}_0\frac{dt}{a^2\cos^2 t +b^2\sin^2 t} = \frac{2\pi}{ab}$$ $$\textit{solution}$$ Let us integrate the following function $$f(z) = \frac{1}{z}$$ Around the ellipse $$\oint_{\gamma}f(z)\,dz =2\pi i\,\mathrm{Res}(f,0)$$ The parametrization of the ellipse \(\gamma(t) = a\cos(t)+ib\sin(t)\) $$\oint_{\gamma}f(z)\,dz=\int^{2\pi}_0 \frac{-a\sin t+ib\cos t}{a\cos t+ib\sin t} … Continue reading

Posted in Contour Integration | Tagged , , , , | Leave a comment

Integrating a fraction of exponential and trignometric using rectangular contour

[Ex 41 ] Watson’s complex integration $$\int^\infty_0 \frac{\sin(ax)}{e^{2\pi x}-1}\,dx = \frac{1}{4}\coth\left(\frac{a}{2} \right)-\frac{1}{2a}$$ $$\textit{solution}$$ By integrating the following function $$f(z) = \frac{e^{iaz}}{e^{2\pi z}-1}$$ The function is analytic in and on the contour, indented at the poles of the function Hence by … Continue reading

Posted in Contour Integration | Tagged , , , , , , , , | Leave a comment

Integrating around a triangular contour for Fresnel integral

$$\int^\infty_0\frac{\cos(x)}{\sqrt{x}}\,dx =\int^\infty_0\frac{\sin(x)}{\sqrt{x}}\,dx =\sqrt{\frac{\pi}{2}}$$ $$\textit{solution}$$ Consider the following function $$f(z)=z^{-1/2}\,e^{iz}$$ Where we choose the principle root for \( z^{-1/2}=e^{-1/2\log(z)}\). By integrating around the following contour $$\int_{C_r}f(z)\,dz+\int_{r}^R f(x)\,dx+\int_{\gamma}f(z)\,dz+\int^{iR}_{ir}f(x)\,dx = 0$$ Taking the integral around the small quarter circle with $r\to 0$ $$\left| … Continue reading

Posted in Contour Integration | Tagged , , , , , , | Leave a comment

Integration related to gamma function using rectangle contour

[Ex 9] Watson’s complex integration $$\int^{\infty}_{-\infty}e^{-x^2}\,\cos(2ax)dx=e^{-a^2}\sqrt{\pi}$$ $$proof$$ Integrate the following function $$f(z) = e^{-z^2}$$ Use the following contour Note that the function is entire, hence $$\int^{L}_{-L} e^{-t^2}\,dt+\int^{L+ai}_{L} e^{-t^2}\,dt+\int^{-L}_{-L+ai} e^{-t^2}\,dt+\int^{-L+ai}_{L+ai}e^{-t^2}\,dt=0$$ For the forth integral use the substitution \(x= t-ai\) $$\int^{-L+ai}_{L+ai}e^{-t^2}\,dt=\int^{-L}_{L}e^{-(x+ai)^2}\,dx=-e^{a^2}\int^{L}_{-L}e^{-x^2}\,e^{-2iax}dx$$ Take … Continue reading

Posted in Contour Integration, Gamma function | Tagged , , , , , , , | Leave a comment

Integral of arctan and log using contour integration

$$\int^\infty_0\frac{\log\left(x^2+1 \right)\arctan^2\left(x\right)}{x^2}\,dx = \frac{\pi^3}{12}+\pi \log^2(2)$$ Lemma $$\int^\infty_0 \frac{\log^3(1 + x^2)}{x^2}\,dx = \pi^3+ 3 \pi \log^2(4)$$ Start by the following $$\int^{\infty}_0 x^{-p}(1+x)^{s-1} dx= \frac{\Gamma(1-p)\Gamma(p-s)}{\Gamma(1-s)}$$ Let \( x\to x^2 \) $$\int^{\infty}_0 x^{-2p+1}(1+x^2)^{s-1} dx= \frac{\Gamma(1-p)\Gamma(p-s)}{2\Gamma(1-s)}$$ Let \( p = 3/2 \) $$\int^{\infty}_0 \frac{1}{x^2(1+x^2)^{1-s}} … Continue reading

Posted in Beta function, Contour Integration | Tagged , , , , , , , , | 4 Comments

Integrating along the unit circle

Prove that $$\int^{2\pi}_0e^{\cos \theta}\cos(n\theta -\sin \theta)\,d \theta=\frac{2\pi}{n!}$$ $$\textit{proof}$$   Consider the following function $$f(z)=e^{z^{-1}}z^{n-1}$$ Now we integrate the function along a circle of radius 1 The contour encloses a pole at \(z = 0\) $$\oint_{|z|=1}e^{z^{-1}}z^{n-1} dz=2\pi i\mathrm{Res}(f(z),0) $$ Now we … Continue reading

Posted in Contour Integration | Tagged , , , , , , , | Leave a comment

Contour method for shifted logarithm branch

Prove  \( a,b,c,d >0 \) $$\int^\infty_0 \frac{\log(a^2+b^2x^2)}{c^2+d^2x^2}\,dx = \frac{\pi}{cd} \log \frac{ad+bc}{d}$$ Consider the function $$f(z) = \frac{\log(a-ibz)}{c^2+d^2z^2}$$ We need the logarithm with the branch cut \( y<-\frac{a}{b} , x =0 \) . Note that this corresponds to $$\log(a+ibz) = \log\sqrt{(a+y)^2+b^2x^2}+i\theta … Continue reading

Posted in Contour Integration | Tagged , , , , , , , | Leave a comment

Solving Euler sums using Contour integration

Prove that $$\sum_{n=1}^\infty \frac{H_n}{n^2} = 2\zeta(3)$$ $$\textit{proof}$$ Consider the function $$f(z) = \frac{(\psi(-z)+\gamma)^2}{z^2}$$ Note that \( f \) has poles at non-negative integers By integration around a large circle \( |z| = \rho \) Note that $$\oint f(z)\,dz = 2\pi … Continue reading

Posted in Contour Integration, Euler sum | Tagged , , , , , , | Leave a comment