
Recent Posts
 Integrating a cosine log integral around a semicircle contour
 Creating Difficult integrals by the residue theorem
 Proving a trigonometric integral by integrating around an ellipse in the complex plain
 Integrating a fraction of exponential and trignometric using rectangular contour
 Integrating around a triangular contour for Fresnel integral
Recent Comments
 Ricardo on Integral representation of the digamma function using Abel–Plana formula
 Zaidalyafeai on Integral representation of the digamma function using Abel–Plana formula
 Ricardo on Integral representation of the digamma function using Abel–Plana formula
 Zaidalyafeai on Integral of arctan and log using contour integration
 tired on Integral of arctan and log using contour integration
Archives
Categories
Meta
Tag Archives: sum
Sum of natural numbers equal 1/12 ?
$$\tag{1}1+2+3+4+\cdots =^?\frac{1}{12}$$ There are many problems with that equality. Can a summation of positive integers lead to a negative quantity ? The equality implies that $$\sum_{k=1}^\infty k = \frac{1}{12}$$ But we already know that $$S_N = \sum_{k=1}^Nk = \frac{N(N+1)}{2} \to … Continue reading
Posted in Zeta function
Tagged 1/12, Divergent, natural numbers, negative, sum, value, Zeta
Leave a comment
Symmetry formula for Generalized Linear Euler sums
$$\sum_{k=1}^\infty \frac{H^{(p)}_k}{k^q}+\sum_{k=1}^\infty \frac{H^{(q)}_k}{k^p} =\zeta(p)\zeta(q)+\zeta(p+q)$$ $$\textit{proof}$$ Take the leftmost series and swap the finite and infinite sums $$\sum_{i=1}^\infty \,\sum_{k=i}^\infty\frac{1}{i^p} \frac{1}{k^q}=\sum_{i=1}^\infty \,\sum_{k=1}^\infty\frac{1}{i^p} \frac{1}{k^q}\sum_{i=1}^\infty\frac{1}{i^p} \,\sum_{k=1}^{i1} \frac{1}{k^q}$$ The second sum can be written as $$\sum_{i=1}^\infty\frac{1}{i^p} \,\sum_{k=1}^{i1} \frac{1}{k^q} = \sum_{i=1}^\infty\frac{1}{i^p} \,\left(\sum_{k=1}^{i} \frac{1}{k^q}\frac{1}{i^p}\right)$$ By separating and … Continue reading
Integral representation of generalized Euler sums
$$\sum_{k=1}^\infty\frac{H^{(p)}_k}{k^q} = \zeta(p)\zeta(q) +(1)^{p}\frac{1}{ (p1)!}\int^1_0\frac{\mathrm{Li}_q(x)\log(x)^{p1}}{1x}\,dx$$ $$\textit{proof}$$ Note that $$\psi_0(a+1)= \int^1_0\frac{1x^a}{1x}\,dx$$ By differentiating with respect to \(a\) , \(p \) times we have $$\psi_p(a+1) = \frac{\partial}{\partial a^p}\int^1_0\frac{1x^a}{1x}\,dx$$ $$\psi_p(a+1) = \int^1_0\frac{x^a\log(x)^{p}}{1x}\,dx$$ Let \( a =k\) $$\psi_{p1}(k+1) = \int^1_0\frac{x^k\log(x)^{p1}}{1x}\,dx$$ Use the relation to polygamma $$H^{(p)}_k … Continue reading
Posted in Euler sum, PolyGamma, Polylogarithm
Tagged Euler, Integral, polylgoarithm, proof, representation, sum
Leave a comment
Nonlinear Euler sums using Nielsen formula
According to Nielsen we have the following : If $$f(x)= \sum_{n= 0}^\infty a_n x^n $$ Then we have the following $$\tag{1}\int^1_0 f(xt)\, \mathrm{Li}_2(t)\, dx=\frac{\pi^2}{6x}\int^x_0 f(t)\, dt \frac{1}{x}\sum_{n=1}^\infty \frac{a_{n1} H_{n}}{n^2}x^n$$ Now let \( a_n = H_n \) then we have the … Continue reading