Tag Archives: trignometric

Integrating a fraction of exponential and trignometric using rectangular contour

[Ex 41 ] Watson’s complex integration $$\int^\infty_0 \frac{\sin(ax)}{e^{2\pi x}-1}\,dx = \frac{1}{4}\coth\left(\frac{a}{2} \right)-\frac{1}{2a}$$ $$\textit{solution}$$ By integrating the following function $$f(z) = \frac{e^{iaz}}{e^{2\pi z}-1}$$ The function is analytic in and on the contour, indented at the poles of the function Hence by … Continue reading

Posted in Contour Integration | Tagged , , , , , , , , | Leave a comment