Tag Archives: Weierstrass

Weierstrass representation of Gamma function proof

$$\Gamma(z)\,= \frac{e^{-\gamma z}}{z} \prod_{n=1}^\infty \left(1 + \frac{z}{n}\right)^{-1} e^{z/n}$$ \(\textit{where }  \gamma  \textit{ is the Euler constant}\) $$ \textit{proof}$$ Take logarithm to the Euler representation $$\log z\Gamma(z) =\lim_{n\to \infty}z\sum_{k=1}^n \left(\log\left(1+k\right)-\log(k)\right)-\sum_{k=1}^n\log\left(1+\frac{z}{k}\right)$$ Note the alternating sum $$\sum_{k=1}^n \left(\log\left(1+k\right)-\log(k)\right) = \log(n+1)$$ Hence we have … Continue reading

Posted in Gamma function | Tagged , , , | Leave a comment